-
Dense plasma focus (DPF) is a pulsed high current discharge device, which is widely used in particle accelerator, controlled nuclear fusion, space propulsion and pulsed neutron source. However, existing models for DPF dynamics, including semi-empirical snowplow approximations and particle-in-cell (PIC) methods, face limitations in balancing computational efficiency with comprehensive physical descriptions. In contrast, magnetohydrodynamic (MHD) models enable comprehensive analysis of macroscopic phenomena (e.g., sheath motion, current distribution, fluid instabilities) and parametric impacts (e.g., electrode geometry, gas pressure, driving current waveforms) on DPF performance. Although MHD cannot self-consistently resolve kinetic behaviors like high-energy particle beams or neutron production during pinch phases, it remains highly valuable for investigating macroscopic DPF physics when quantitative neutron yield analysis is unnecessary. Therefore, a two-temperature MHD model coupled with an external RLC circuit is developed in this paper, incorporating electron-ion thermal nonequilibrium, resistive effects, and plasma transport coefficients derived from Braginskii formulations. The model is rigorously validated against experimental data from two benchmark DPF devices (UNU and UDMPF1), demonstrating excellent agreement in current waveform, voltage profile, and radial implosion trajectory. The research shows that the DPF plasma sheath is continuously accelerated along the axial direction under the action of the Lorentz force. When it moves to the end of the inner electrode, the plasma sheath bends radially inward and is eventually compressed on the symmetry axis to form high-temperature and high-density plasma. For the UNU device, simulations reveal distinct plasma evolution phases: (1) Axial acceleration (0–2.5 μs), where the current sheath attains velocities up to 90 km/s under Lorentz force dominance, with ion temperatures rising from 1 eV to 100 eV. (2) Radial implosion (2.78–2.90 μs), during which plasma density increases by an order of magnitude (to ~10²⁴ m⁻³) and ion temperatures surge to ~1 keV through magnetically driven compression. Further studies also find that for large DPF devices, reducing the inductance and increasing the capacitance, the circuit current is prone to saturation; while increasing the circuit voltage has a more significant effect on the current increase. This paper shows that for large DPF devices, the ratio of the anode radius to cathode radius needs to be as small as possible, which can increase the peak current and pinch current of DPF as much as possible under the condition that other parameters remain unchanged.
-
Keywords:
- Dense plasma focus /
- magnetohydrodynamic simulation /
- plasma acceleration /
- pinch
-
[1] Filippov N, Filippova T, Vinogradov V 1962 Nucl. Fusion 2 577-587
[2] Mather J 1964 Phys. Fluids 7(11) S28-S34
[3] Khan I, Jabbar S, Hussain T 2010 Nucl. Instrum. Methods Phys. Res. 268(13) 2228-2234
[4] Khan K, Ahmad R, Hussain T 2022 Radiat. Eff. Defects Solids 177 892-902
[5] Rawat R 2015 J. Phys. Conf. Ser 591 012021
[6] Soto L 2005 Plasma Phys. Control. Fusion 47(5A) A361
[7] Tang V, Adams M, Rusnak B 2010 IEEE Trans. Plasma Sci. 38(4) 719-727
[8] Temple B, Barnouin O, Miley G H 1991 Fusion Sci. Technol. 19 846–851
[9] Thomas R, Yang Y, Miley G 2005 AIP Conf. Proc. 746 536-543
[10] Auluck S 2023 Phys. Plasmas 30 043109
[11] Gribkov V, Latyshev S, Miklaszewski R 2010 Phys. Scr. 81 035502
[12] Verma R, Roshan M, Malik F 2008 Plasma Sources Sci. Technol. 17 045020
[13] Lerner E J, Hassan S M, Karamitsos Z I, Fritsch R 2023 J. Fusion Energy 42(1) 7
[14] Bennett N, Blasco M, Breeding K, et al, 2016 Source and Diagnostic Development for a Neutron Diagnosed Subcritical Experiment North Las Vegas, NV (United States)
[15] Bennett N, Blasco M, Constantino D 2016 Dense Plasma Focus Experimental Results and Plans for NDSE North Las Vegas, NV (United States)
[16] Krishnan M 2012 IEEE Trans. Plasma Sci. 40(12) 3189-3221
[17] Bernard A, Coudevilie A, Jolas A 1975 Phys. Fluids 18(2) 180-194
[18] Sadowski M, Herold H, Schmidt H 1984 Phys. Lett. A 105(3) 117-123
[19] Decker G, Kies W, Nadolny R 1996 Plasma Sources Sci. Technol. 5(1) 112
[20] Brzosko J S, Robouch B, Klobukowska J 1987 Fusion Sci. Technol. 12(1) 71-91
[21] Gribkov V Bienkowska B, Borowiecki M, et al, 2007 J. Phys. D: Appl. Phys. 40 1977-1989
[22] Dense Plasma Focus Group 1975 Acta Phys. Sin. 24 309-316 (in Chinese) (浓密等离子体焦点研究小组 1975 物理学报 24 309-316)
[23] Lv M F, Han Y, Yang J J, Wang X X 1996 Tsinghua Sci. Technol. 5 36-41 (in Chinese) (吕铭方, 韩旻, 杨津基, 王新新 1996清华大学学报 5 36-41)
[24] Wang X X, Han Y, Wang Z W, Liu K 1999 Sci. China 29 76-81 (in Chinese) (王新新, 韩旻, 王志文, 刘坤 1999 中国科学 29 76-81)
[25] Zhang G X, Luo C M, Wang X X 2002 High Volt. Eng. 28(B12) 32-34 (in Chinese) (张贵新, 罗承沐, 王新新等2002高电压技术 28(B12) 32-34)
[26] Han Y, Luo C M, Wang K C 1995 High Power Laser and Particle Beams 7 461-466 (in Chinese) (韩旻, 罗承沐, 王克超 1995 强激光与粒子束 7 461-466)
[27] Long J D, Chen L, Feng S P, 2019 High Energy Density Physics 2 42-52 (in Chinese) (龙继东, 陈林,丰树平 2019 高能量密度物理 2 42-52)
[28] Chen L, Feng S P, Gao S S 2004 Sci. China 34 458-465 (in Chinese) (陈林, 丰树平, 高顺受 2004 中国科学34 458-465)
[29] Li M J, Fan J, Zhang F Q 2018 High Power Laser and Particle Beams 30129-133 (in Chinese) (李名加, 范娟, 章法强 2018 强激光与粒子束 30 129-133)
[30] Guo H S, Yang G Z, Zhu X B 2012 Nuclear Electronics and Detection Technology 32 880-884 (in Chinese) (郭洪生, 杨高照, 朱学彬 2012 核电子学与探测技术32 880-884)
[31] Xi H, Liang C, Zhang F 2021 J. Instrum. 16(12) P12021
[32] Tan X H, Dai J Y, Mi L, Huang H G, Xie C M, Zhou M G 2004 The 3rd Beijing Nuclear Society Nuclear Application Technology Academic Exchange meeting (in Chinese) (谈效华, 戴晶怡, 米伦,黄华国,谢超美,周明贵 2004 第三届北京核学会核应用技术学术交流会)
[33] Haines M 2011 Plasma Phys. Control. Fusion 53(9): 093001
[34] Auluck S, Kunes P, Paduch M et al, 2021 Plasma 4(3) 450-669
[35] Hart P J 1962 Phys. Fluids 5(1) 38-47
[36] Lee S 2014 J. Fusion Energy 33(4) 319-335
[37] Potter D 1971 Phys. Fluids 14(9) 1911-1924
[38] Garanin S F, Mamyshev V I, 2008 Plasma Phys. Rep. 34 639-649
[39] Meehan B T, Niederhau H, 2016 The Journal of Defense Modeling and Simulation: Applications Methodology Technology 13 153–160
[40] Schmidt A, Tang V and Welch D 2012 Phys. Rev. Lett. 109 205003
[41] Schmidt A, Link A and Welch D 2014 Phys. Plasmas 21 102703
[42] Angus J, Link A and Schmid A 2021 Phys. Plasmas 28 010701
[43] Liu Q 2002, Ph. D. Dissertation (Beijing: Graduate School of China Academy of Engineering Physics) (in Chinese) [刘全 2002 博士学位论文(北京:中国工程物理研究院研究生院)]
[44] Braginskii S 1965 Rev. Plasma Phys. 1 205
[45] Lim L H, Yap S, Lim L K, Lee M C, Poh H S, Ma J, Yap S S, Lee S 2015 Phys. Plasmas 22 092702
Metrics
- Abstract views: 86
- PDF Downloads: 3
- Cited By: 0