-
As a typical cylindrical-convergent drive technique, magnetically driven solid liner implosion could compress interior substance with a shock or quasi-isentropic manner, which has been widely used to investigate the hydrodynamic behavior, the dynamic characteristics of material and fusion energy and so on. For aspecific facility, the implosion parameters depend on material, radius and thickness of the liner, and the ablation of liner restrict the optional parameters. The concept of electrical action is introduced via thin shell model, which not only is the representation of states for conductive metal, but also indicates the change of liner velocity under the condition of thin shell hypothesis. The result shows that the outer velocity of liner increases linearly with electrical action and is directly proportional to liner thickness but inversely proportional to liner density. The incompressible zero-dimensional model is used to calculate the dynamic parameters of thin shell liner, including the implosion time, the outer interface velocity, the implosion kinetic energy, and the electrical action under the condition of low linear current density. There exist optimal radius and thickness which can achieve the maximum velocity, momentum, and kinetic energy. The aluminum is suitable for reaching higher velocity and the copper can obtain higher pressure according to a proportionality coefficient Qb/ρ which is an intrinsic quality of metal. A one-dimensional (1D) elastic plastic magnetic hydrodynamic code which is called SOL1D is developed to simulate liner implosion behavior. The modified relationship between resistivity and electrical action is introduced to SOL1D, which can adapt higher hydrodynamic pressure. According to current waves, the 1D code can be used to simulate liner implosion behavior for all kinds of current densities. The 1D simulation liner velocity is in agreement with both the experimental results and the electrical action model for liner implosion experiment on FP-1 facility. The simulation of isentropic compression experiment at ZR facility shows that the magnetic diffusion process is suppressed at extra high current density and hydrodynamic pressure, and the electrical action is larger than the experimental value of wire electrical explosion. The zero-dimensional (0D) and 1D simulation show that estimating the liner velocity and liner phase changing via the electrical action are suitable when thin shell hypothesis and low current density assumption are satisfied.
-
Keywords:
- solid liner /
- electrical action /
- zero-dimensional model /
- magneto-hydrodynamics simulation
[1] Bowers R L, Brownell J H, Lee H, Mclenithan K D, Scannapieco A J, Shananhan W R 1998 J. Appl. Phys. 83 4146Google Scholar
[2] Hanmmerberg J E, Kyrala G A, Oro D M, Fulton R D, Anderson W E, Obst A W, Oona H, Stokes J 1999 Los Alamos National Laboratory Report LA-UR-99-3378 (New Mexico: Los Alamos National Laboratory)
[3] Degnan J H, Alme M L, Austin B S, et al. 1999 Phys. Rev. Lett. 82 2681Google Scholar
[4] Reinovsky R E 2000 IEEE Trans. Plasma Sci. 28 1563Google Scholar
[5] Rodriguez G, Roberts J P, Echave J A, Taylor A J 2001 Rev. Sci. Instrum. 72 3230Google Scholar
[6] Rodriguez G, Roberts J P, Echave J A, Taylor A J 2003 J. Appl. Phys. 93 1791Google Scholar
[7] Turchi P J, Reass W A, Rousculp C L, Reinovsky R E, Griego J R, Oro D M 2011 IEEE Trans. Plasma Sci. 39 2006Google Scholar
[8] Rousculp C L, Oro D M, Margolin L G, Griego J R, Reinovsky R E, Turchi P J 2015 Los Alamos National Laboratory Report LA-UR-15-25643 (New Mexico: Los Alamos National Laboratory)
[9] Freeman M S, Cousculp C, Oro D, Kreher S, Cheng B L, Griego J, Patten A, Neukirch L, Reinovsky R, Truchi P, Bradley J, Reass W, Fierro F, Randolph R, Donovan J, Saunders A, Mariam F, Tang Z W 2018 AIP Conf. Proc. 1979 080005
[10] 张扬, 戴自换, 孙奇志, 章征伟, 孙海权, 王裴, 丁宁, 薛创, 王冠琼, 沈智军, 李肖, 王建国 2018 物理学报 67 080701Google Scholar
Zhang Y, Dai Z H, Sun Q Z, Zhang Z W, Sun H Q, Wang P, Ding N, Xue C, Wang G Q, Shen Z J, Li X, Wang J G 2018 Acta Phys. Sin. 67 080701Google Scholar
[11] Atchison W L, Faehl R J, Lindemuth I R, Reinovsky R E 2005 Los Alamos National Laboratory Report LA-UR-04-9044 (New Mexico: Los Alamos National Laboratory)
[12] Lemke R W, Dolan D H, Dalton D G, Brown J L, Tomlinson K, Robertson G R, Knudson M D, Harding E, Mattsson A E, Carpenter J H, Drake R R, Cochrane K, Blue B E, Robinson A C, Mattsson T R 2016 J. Appl. Phys. 119 015904Google Scholar
[13] Degnan J H, Taccetti J M, Cavazos T, Clark D, Coffey S K, Faehl R J, Frese M H, Fulton D, Gueits J C, Gale D, Hussey T W, Intrator T P, Kirkpatrick R C, Kiuttu G H, Lehr F M, Letterio J D, Lindemuth I, McCullough W F, Moses R, Peterkin R E, Jr., Reinovsky R E, Roderick N F, Ruden E L, Shlachter J S, Schoenberg K F, Siemon R E, Sommars W, Turchi P J, Wurden G A, Wysocki F 2001 IEEE Trans. Plasma Sci. 29 93Google Scholar
[14] Intrator T, Taccetti M, Clark D A, et al. 2002 Nucl. Fusion 42 211Google Scholar
[15] Sun Q Z, Yang X J, Jia Y S, Li L L, Fang D F, Zhao X M, Qin W D, Liu Z F, Liu W, Li J, Chi Y, Wang X G 2017 Matter Radiat. Extremes 2 263Google Scholar
[16] Turchi P J, Baker W L 1973 J. Appl. Phys. 44 4936Google Scholar
[17] 章征伟, 魏懿, 孙奇志, 刘伟, 赵小明, 张朝辉, 王贵林, 郭帅, 谢卫平 2016 强激光与粒子束 28 045017Google Scholar
Zhang Z W, Wei Y, Sun Q Z, Liu W, Zhao X M, Zhang Z H, Wang G L, Guo S, Xie W P 2016 High Power Laser and Particle Beams 28 045017Google Scholar
[18] 张绍龙, 章征伟, 孙奇志, 刘伟, 赵小明, 张朝辉, 王贵林, 贾月松 2017 强激光与粒子束 29 105002Google Scholar
Zhang S L, Zhang Z W, Sun Q Z, Liu W, Zhao X M, Zhang Z H, Wang G L, Jia Y S 2017 High Power Laser and Particle Beams 29 105002Google Scholar
[19] Zhang S L, Liu W, Wang G L, Zhang Z W, Sun Q Z, Zhang Z H, Li J, Chi Y, Zhang N C 2019 Chin. Phys. B 28 044702Google Scholar
[20] Faehl R J, Anderson B G, Clark D A, et al. 2004 IEEE Trans.Plasma Sci. 32 1972Google Scholar
[21] Goforth J H, Atchison W L, Colgate S A, et al. 2009 Los Alamos National Laboratory Report LA-UR-09-04121 (New Mexico: Los Alamos National Laboratory)
[22] 孙奇志, 刘伟, 刘正芬, 池原, 戴文峰, 方东凡, 孙承伟 2009 强激光与粒子束 21 1571
Sun Q Z, Liu W, Liu Z F, Chi Y, Dai W F, Fang D F, Sun C W 2009 High Power Laser and Particle Beams 21 1571
[23] 王贵林, 郭帅, 沈兆武, 等 2014 物理学报 63 196201Google Scholar
Wang G L, Guo S, Shen Z W, et al. 2014 Acta Phys. Sin. 63 196201Google Scholar
[24] 蔡进涛, 王桂吉, 赵剑衡, 莫建军, 翁继东, 吴刚, 赵峰 2010 高压物理学报 6 455Google Scholar
Cai J T, Wang G J, Zhao J H, Mo J J, Weng J D, Wu G, Zhao F 2010 Chinese Journal of High Pressure Physics 6 455Google Scholar
[25] Tucker T J, Toth R P 1975 Sandia National Laboratory Report SAND-75-0041 (New Mexico: Sandia National Laboratory)
[26] Wilkins M L 1999 Computer Simulation of Dynamic Phenomena (Berlin: Springer) pp63–64
[27] Brugess T J 1986 Sandia National Laboratory Report SAND-86-1093 C (New Mexico: Sandia National Laboratory)
[28] Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498Google Scholar
[29] Kraus R G, Davis J P, Seagle C T, Fratanduono D E, Swift D C, Brown J L, Eggert J H 2016 Phys. Rev. B 93 134105Google Scholar
-
表 1 铝的电作用量常数
Table 1. Electrical action constants for aluminum
物态 电作用量Q/1016 A2·s·m–4 Qmb 2.52 Qme 3.20 Qv 4.86 Qb 6.58 表 2 典型金属的材料特性数据
Table 2. The material constants for typical metals.
材料 电阻率η/μΩ·cm 密度ρ/g·cm–3 爆炸电作用量Qb/1016 A2·s·m–4 (Qb/ρ)/1010 A2·s·g–1·m–1 铝(Aluminum) 2.82 2.70 6.58 2.44 铜(Copper) 1.77 8.95 17.30 1.93 金(Gold) 2.44 19.30 8.30 0.43 铀(Uranium) 28.00 18.70 3.50 0.19 表 3 典型金属的碰撞压力
Table 3. The impact pressure of typical metals.
铝靶PI/GPa 铜靶PI/GPa 金靶PI/GPa 铀靶PI/GPa 铝飞层(2.44 km/s) 23.5 34.4 40.4 39.6 铜飞层(1.93 km/s) 26.1 46.4 60.4 59.3 金飞层(0.43 km/s) 5.5 10.3 14 12.9 铀飞层(0.19 km/s) 2.2 4.0 5.3 4.8 -
[1] Bowers R L, Brownell J H, Lee H, Mclenithan K D, Scannapieco A J, Shananhan W R 1998 J. Appl. Phys. 83 4146Google Scholar
[2] Hanmmerberg J E, Kyrala G A, Oro D M, Fulton R D, Anderson W E, Obst A W, Oona H, Stokes J 1999 Los Alamos National Laboratory Report LA-UR-99-3378 (New Mexico: Los Alamos National Laboratory)
[3] Degnan J H, Alme M L, Austin B S, et al. 1999 Phys. Rev. Lett. 82 2681Google Scholar
[4] Reinovsky R E 2000 IEEE Trans. Plasma Sci. 28 1563Google Scholar
[5] Rodriguez G, Roberts J P, Echave J A, Taylor A J 2001 Rev. Sci. Instrum. 72 3230Google Scholar
[6] Rodriguez G, Roberts J P, Echave J A, Taylor A J 2003 J. Appl. Phys. 93 1791Google Scholar
[7] Turchi P J, Reass W A, Rousculp C L, Reinovsky R E, Griego J R, Oro D M 2011 IEEE Trans. Plasma Sci. 39 2006Google Scholar
[8] Rousculp C L, Oro D M, Margolin L G, Griego J R, Reinovsky R E, Turchi P J 2015 Los Alamos National Laboratory Report LA-UR-15-25643 (New Mexico: Los Alamos National Laboratory)
[9] Freeman M S, Cousculp C, Oro D, Kreher S, Cheng B L, Griego J, Patten A, Neukirch L, Reinovsky R, Truchi P, Bradley J, Reass W, Fierro F, Randolph R, Donovan J, Saunders A, Mariam F, Tang Z W 2018 AIP Conf. Proc. 1979 080005
[10] 张扬, 戴自换, 孙奇志, 章征伟, 孙海权, 王裴, 丁宁, 薛创, 王冠琼, 沈智军, 李肖, 王建国 2018 物理学报 67 080701Google Scholar
Zhang Y, Dai Z H, Sun Q Z, Zhang Z W, Sun H Q, Wang P, Ding N, Xue C, Wang G Q, Shen Z J, Li X, Wang J G 2018 Acta Phys. Sin. 67 080701Google Scholar
[11] Atchison W L, Faehl R J, Lindemuth I R, Reinovsky R E 2005 Los Alamos National Laboratory Report LA-UR-04-9044 (New Mexico: Los Alamos National Laboratory)
[12] Lemke R W, Dolan D H, Dalton D G, Brown J L, Tomlinson K, Robertson G R, Knudson M D, Harding E, Mattsson A E, Carpenter J H, Drake R R, Cochrane K, Blue B E, Robinson A C, Mattsson T R 2016 J. Appl. Phys. 119 015904Google Scholar
[13] Degnan J H, Taccetti J M, Cavazos T, Clark D, Coffey S K, Faehl R J, Frese M H, Fulton D, Gueits J C, Gale D, Hussey T W, Intrator T P, Kirkpatrick R C, Kiuttu G H, Lehr F M, Letterio J D, Lindemuth I, McCullough W F, Moses R, Peterkin R E, Jr., Reinovsky R E, Roderick N F, Ruden E L, Shlachter J S, Schoenberg K F, Siemon R E, Sommars W, Turchi P J, Wurden G A, Wysocki F 2001 IEEE Trans. Plasma Sci. 29 93Google Scholar
[14] Intrator T, Taccetti M, Clark D A, et al. 2002 Nucl. Fusion 42 211Google Scholar
[15] Sun Q Z, Yang X J, Jia Y S, Li L L, Fang D F, Zhao X M, Qin W D, Liu Z F, Liu W, Li J, Chi Y, Wang X G 2017 Matter Radiat. Extremes 2 263Google Scholar
[16] Turchi P J, Baker W L 1973 J. Appl. Phys. 44 4936Google Scholar
[17] 章征伟, 魏懿, 孙奇志, 刘伟, 赵小明, 张朝辉, 王贵林, 郭帅, 谢卫平 2016 强激光与粒子束 28 045017Google Scholar
Zhang Z W, Wei Y, Sun Q Z, Liu W, Zhao X M, Zhang Z H, Wang G L, Guo S, Xie W P 2016 High Power Laser and Particle Beams 28 045017Google Scholar
[18] 张绍龙, 章征伟, 孙奇志, 刘伟, 赵小明, 张朝辉, 王贵林, 贾月松 2017 强激光与粒子束 29 105002Google Scholar
Zhang S L, Zhang Z W, Sun Q Z, Liu W, Zhao X M, Zhang Z H, Wang G L, Jia Y S 2017 High Power Laser and Particle Beams 29 105002Google Scholar
[19] Zhang S L, Liu W, Wang G L, Zhang Z W, Sun Q Z, Zhang Z H, Li J, Chi Y, Zhang N C 2019 Chin. Phys. B 28 044702Google Scholar
[20] Faehl R J, Anderson B G, Clark D A, et al. 2004 IEEE Trans.Plasma Sci. 32 1972Google Scholar
[21] Goforth J H, Atchison W L, Colgate S A, et al. 2009 Los Alamos National Laboratory Report LA-UR-09-04121 (New Mexico: Los Alamos National Laboratory)
[22] 孙奇志, 刘伟, 刘正芬, 池原, 戴文峰, 方东凡, 孙承伟 2009 强激光与粒子束 21 1571
Sun Q Z, Liu W, Liu Z F, Chi Y, Dai W F, Fang D F, Sun C W 2009 High Power Laser and Particle Beams 21 1571
[23] 王贵林, 郭帅, 沈兆武, 等 2014 物理学报 63 196201Google Scholar
Wang G L, Guo S, Shen Z W, et al. 2014 Acta Phys. Sin. 63 196201Google Scholar
[24] 蔡进涛, 王桂吉, 赵剑衡, 莫建军, 翁继东, 吴刚, 赵峰 2010 高压物理学报 6 455Google Scholar
Cai J T, Wang G J, Zhao J H, Mo J J, Weng J D, Wu G, Zhao F 2010 Chinese Journal of High Pressure Physics 6 455Google Scholar
[25] Tucker T J, Toth R P 1975 Sandia National Laboratory Report SAND-75-0041 (New Mexico: Sandia National Laboratory)
[26] Wilkins M L 1999 Computer Simulation of Dynamic Phenomena (Berlin: Springer) pp63–64
[27] Brugess T J 1986 Sandia National Laboratory Report SAND-86-1093 C (New Mexico: Sandia National Laboratory)
[28] Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498Google Scholar
[29] Kraus R G, Davis J P, Seagle C T, Fratanduono D E, Swift D C, Brown J L, Eggert J H 2016 Phys. Rev. B 93 134105Google Scholar
Catalog
Metrics
- Abstract views: 6156
- PDF Downloads: 51
- Cited By: 0