Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development and application of OpenFOAM based magnetohydrodynamic solver

Li Shang-Qing Wang Wei-Min Li Yu-Tong

Citation:

Development and application of OpenFOAM based magnetohydrodynamic solver

Li Shang-Qing, Wang Wei-Min, Li Yu-Tong
PDF
HTML
Get Citation
  • We develop a compressible magnetohydrodynamic solver to simulate the transonic flows based on an open-source computational fluid dynamics platform OpenFOAM. The solver is achieved by modifying the density-based Riemann solver rhoCentralFoam which adopts a central scheme and is available in OpenFOAM. To improve simulation accuracy and avoid non-physical oscillations, a specialized pressure-implicit algorithm with the splitting of operators is implemented to guarantee the incompressibility of magnetic field. The solver is benchmarked and the convergence rate is between the first and the second order. After benchmark, we apply this solver to magnetohydrodynamic simulations of intense-laser-produced plasma. The influences of uniform axial magnetic field and nonuniform coil-current-induced magnetic field on laser-produced plasma jets are investigated. With the uniform axial magnetic field, the positions of nozzle and the distance between knots are linearly related to square root of thermal over magnetic pressure. With the nonuniform magnetic field generated in the coil, knots are nonlinearly distributed in space and the nozzle position is modulated according to preliminary simulations. In the two kinds of magnetic fields, when the B-field strength is the same at coil center, the magnetic field of relatively small coils can shorten the times of forming nozzles and knots, suggesting that the coil magnetic field is equivalent to a higher uniform one. The simulations can be used as a reference for our future experiment on magnetized laser-produced plasma jet. Meanwhile, our simulation investigation shows that this magnetohydrodynamic solver is suitable for engineering calculation for laser plasma experiments and can deal with the situation with relatively complex configurations.
      Corresponding author: Wang Wei-Min, weiminwang1@ruc.edu.cn ; Li Yu-Tong, ytli@iphy.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25010300, XDA25050300) and the National Natural Science Foundation of China (Grant Nos. 11827807, 11775302)
    [1]

    Gotchev O V, Chang P Y, Knauer J P, Meyerhofer D D, Polomarov O, Frenje J, Li C K, Manuel M J, Petrasso R D, Rygg J R, Seguin F H, Betti R 2009 Phys. Rev. Lett. 103 215004Google Scholar

    [2]

    Chang P Y, Fiksel G, Hohenberger M, Knauer J P, Betti R, Marshall F J, Meyerhofer D D, Seguin F H, Petrasso R D 2011 Phys. Rev. Lett. 107 035006Google Scholar

    [3]

    Ciardi A, Vinci T, Fuchs J, Albertazzi B, Riconda C, Pepin H, Portugall O 2013 Phys. Rev. Lett. 110 025002Google Scholar

    [4]

    Higginson D P, Khiar B, Revet G, Beard J, Blecher M, Borghesi M, Burdonov K, Chen S N, Filippov E, Khaghani D, Naughton K, Pepin H, Pikuz S, Portugall O, Riconda C, Riquier R, Rodriguez R, Ryazantsev S N, Skobelev I Y, Soloviev A, Starodubtsev M, Vinci T, Willi O, Ciardi A, Fuchs J 2017 Phys. Rev. Lett. 119 255002Google Scholar

    [5]

    Revet G, Khiar B, Filippov E, Argiroffi C, Beard J, Bonito R, Cerchez M, Chen S N, Gangolf T, Higginson D P, Mignone A, Olmi B, Ouille M, Ryazantsev S N, Skobelev I Y, Safronova M I, Starodubtsev M, Vinci T, Willi O, Pikuz S, Orlando S, Ciardi A, Fuchs J 2021 Nat. commun. 12 762Google Scholar

    [6]

    Muranaka T, Uchimura H, Nakashima H, Zakharov Y P, Nikitin S A, Ponomarenko A G 2001 Jpn. J. Appl. Phys. 40 824Google Scholar

    [7]

    Plechaty C, Presura R, Esaulov A A 2013 Phys. Rev. Lett. 111 185002Google Scholar

    [8]

    Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Beard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S N, Cowan T E, Herrmannsdorfer T, Higginson D P, Kroll F, Pikuz S A, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt H P, Skobelev I Y, Faenov A Y, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pepin H, Fuchs J 2014 Science 346 325Google Scholar

    [9]

    Ivanov V V, Maximov A V, Betti R, Wiewior P P, Hakel P, Sherrill M E 2017 Plasma Phys. Contr. F. 59 085008Google Scholar

    [10]

    Dubey A, Antypas K, Ganapathy M K, Reid L B, Riley K, Sheeler D, Siegel A, Weide K 2009 Parallel Comput. 35 512Google Scholar

    [11]

    Ciardi A, Lebedev S V, Frank A, Blackman E G, Chittenden J P, Jennings C J, Ampleford D J, Bland S N, Bott S C, Rapley J, Hall G N, Suzuki-Vidal F A, Marocchino A, Lery T, Stehle C 2007 Phys. Plasmas 14 056501Google Scholar

    [12]

    Seyler C E, Martin M R 2011 Phys. Plasmas 18 012703Google Scholar

    [13]

    Ryutov D D 2010 Astrophys. Space Sci. 336 21Google Scholar

    [14]

    Kostyukov I Y, Ryzhkov S V 2011 Plasma Phys. Rep. 37 1092Google Scholar

    [15]

    Weller H G, Tabor G, Jasak H, Fureby C 1998 Comput. Phys. 12 620Google Scholar

    [16]

    Singh R J, Gohil T B 2019 Int. J. Therm. Sci. 146 106096Google Scholar

    [17]

    Xisto C, Páscoa J, Oliveira P, Nicolini D 2010 European Conference on Computational Fluid Dynamics Lisbon, Portugal, June 14–17, 2010

    [18]

    Ryakhovskiy A I, Schmidt A A 2017 J. Phys. Conf. Ser. 929 012098Google Scholar

    [19]

    Chelem Mayigué C, Groll R 2016 Arch. Appl. Mech. 87 667Google Scholar

    [20]

    Kurganov A, Noelle S, Petrova G 2001 SIAM J. Sci. Comput. 23 707Google Scholar

    [21]

    Kurganov A, Tadmor E 2000 J. Comput. Phys. 160 241Google Scholar

    [22]

    Kühn C, Groll R 2021 Comput. Phys. Commun. 262 107853Google Scholar

    [23]

    Brackbill J U, Barnes D C 1980 J. Comput. Phys. 35 426Google Scholar

    [24]

    Orszag S A, Tang C-M 1979 J. Fluid Mech. 90 129Google Scholar

    [25]

    FLASH User’s Guide Version 4.5, flash. uchicago. edu/ site/publications/flash_pubs. shtml [2017-12-18]

    [26]

    Ziegler U 2008 Comput. Phys. Commun. 179 227Google Scholar

    [27]

    Fogang F, Tchuen G, Burtschell Y, Woafo P 2015 Comput. Fluids 114 297Google Scholar

    [28]

    Balsara D S, Spicer D S 1999 J. Comput. Phys. 153 671Google Scholar

    [29]

    Lei Z, Zhao Z H, Yao W P, Xie Y, Jiao J L, Zhou C T, Zhu S P, He X T, Qiao B 2020 Plasma Phys. Contr. F. 62 095020Google Scholar

    [30]

    Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H, Azechi H 2013 Sci. Rep. 3 1170Google Scholar

  • 图 1  MHDFoam求解器的更新算法示意图

    Figure 1.  Chart flow of update algorithm in the MHDFoam solver.

    图 2  奥萨格-唐磁流体涡旋的(a)初始速度场和(b)初始磁场

    Figure 2.  Initialization of speed field (a) and magnetic field (b) in Orszag-Tang MHD vortex.

    图 3  t = 0.5时奥萨格-唐磁流体涡旋的模拟结果 (a), (c) y = 0.25处密度和磁场比较; (b), (d) 密度和磁场廓线

    Figure 3.  Simulation results of Orszag-Tang MHD vortex at t = 0.5: (a), (c) 1D cut comparisons of density and B-field at y = 0.25; (b), (d) density and B-field contours.

    图 4  磁流体转子 (a) 初始密度廓线; (b), (c) t = 0.15时密度和磁场廓线; (d) t = 0.15时x = 0处磁场比较

    Figure 4.  MHD rotor: (a) Initial density contours; (b), (c) density and magnetic field contours at t = 0.15; (c) 1D cut comparisons of B-field at x = 0 at t = 0.15.

    图 5  t = 0.15时MHDFoam求解磁流体转子问题的磁场散度误差

    Figure 5.  Divergence of magnetic fields using the MHDFoam solver at t = 0.15 for the MHD rotor problem.

    图 6  二维模拟配置

    Figure 6.  Setup for 2D simulation.

    图 7  t = 22 ns时均匀磁场下的密度廓线

    Figure 7.  Density contours at uniform magnetic fields at t = 22 ns

    图 8  (a) t = 22 ns时轴线密度分布; (b), (c)参数LS$ \beta_{\rm o}^{1/2} $关系

    Figure 8.  (a) Density distributions at axis at t = 22 ns; (b), (c) parameter L and S as a function of $ \beta_{\rm o}^{1/2} $

    图 9  线圈电流磁场 (a) xz平面二维分布; (b) x = 0处分布; (c) z = 0处分布

    Figure 9.  Magnetic field of coil currents: (a) 2D distributions in the xz-plane; (b) 1D cut at x = 0; (c) 1D cut at z = 0.

    图 10  t = 22 ns时图9配置的非均匀磁场条件下的密度廓线及与均匀磁场的比对

    Figure 10.  Density contours at nonuniform magnetic fields set in Fig. 9 at t = 22 ns compared with uniform magnetic fields.

    图 11  t = 22 ns时模拟结果 (a)轴线密度分布; (b)无量纲参数S/DIa相平面上的分布

    Figure 11.  Simulation results at t = 22 ns: (a) Density distributions at axis; (b) dimensionless parameter S/D in the Ia-plane.

    表 1  奥萨格-唐问题的相对误差和收敛阶数

    Table 1.  Relative errors (δN) and convergence order (RN) for Orszag-Tang problem.

    NMHDFoamKT-MHD[19]
    δNRNδNRN
    500.15005 0.30370
    1000.080240.900.163830.89
    2000.035541.170.080651.02
    3000.020621.340.046041.38
    4000.013931.360.028751.49
    DownLoad: CSV

    表 2  图10模拟结果的等效参数

    Table 2.  Equivalent parameters of simulation results in Fig. 10.

    非均匀线圈磁场构型等效参数
    Be/Tλe/mm
    构型(1) ($I = 0.5{\text{ MA}}$, $a = 3.0{\text{ mm}}$, ${B_{\text{o}}} = 104.7{\text{ T}}$)~ 95~ 5
    构型(2) ($I = 0.25{\text{ MA}}$, $a = 3.0{\text{ mm}}$, ${B_{\text{o}}} = 52.4{\text{ T}}$)~ 53~ 6.5
    构型(3) ($I = 0.15{\text{ MA}}$, $a = 1.8{\text{ mm}}$, ${B_{\text{o}}} = 52.4{\text{ T}}$)~ 95~ 6
    DownLoad: CSV
  • [1]

    Gotchev O V, Chang P Y, Knauer J P, Meyerhofer D D, Polomarov O, Frenje J, Li C K, Manuel M J, Petrasso R D, Rygg J R, Seguin F H, Betti R 2009 Phys. Rev. Lett. 103 215004Google Scholar

    [2]

    Chang P Y, Fiksel G, Hohenberger M, Knauer J P, Betti R, Marshall F J, Meyerhofer D D, Seguin F H, Petrasso R D 2011 Phys. Rev. Lett. 107 035006Google Scholar

    [3]

    Ciardi A, Vinci T, Fuchs J, Albertazzi B, Riconda C, Pepin H, Portugall O 2013 Phys. Rev. Lett. 110 025002Google Scholar

    [4]

    Higginson D P, Khiar B, Revet G, Beard J, Blecher M, Borghesi M, Burdonov K, Chen S N, Filippov E, Khaghani D, Naughton K, Pepin H, Pikuz S, Portugall O, Riconda C, Riquier R, Rodriguez R, Ryazantsev S N, Skobelev I Y, Soloviev A, Starodubtsev M, Vinci T, Willi O, Ciardi A, Fuchs J 2017 Phys. Rev. Lett. 119 255002Google Scholar

    [5]

    Revet G, Khiar B, Filippov E, Argiroffi C, Beard J, Bonito R, Cerchez M, Chen S N, Gangolf T, Higginson D P, Mignone A, Olmi B, Ouille M, Ryazantsev S N, Skobelev I Y, Safronova M I, Starodubtsev M, Vinci T, Willi O, Pikuz S, Orlando S, Ciardi A, Fuchs J 2021 Nat. commun. 12 762Google Scholar

    [6]

    Muranaka T, Uchimura H, Nakashima H, Zakharov Y P, Nikitin S A, Ponomarenko A G 2001 Jpn. J. Appl. Phys. 40 824Google Scholar

    [7]

    Plechaty C, Presura R, Esaulov A A 2013 Phys. Rev. Lett. 111 185002Google Scholar

    [8]

    Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Beard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S N, Cowan T E, Herrmannsdorfer T, Higginson D P, Kroll F, Pikuz S A, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt H P, Skobelev I Y, Faenov A Y, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pepin H, Fuchs J 2014 Science 346 325Google Scholar

    [9]

    Ivanov V V, Maximov A V, Betti R, Wiewior P P, Hakel P, Sherrill M E 2017 Plasma Phys. Contr. F. 59 085008Google Scholar

    [10]

    Dubey A, Antypas K, Ganapathy M K, Reid L B, Riley K, Sheeler D, Siegel A, Weide K 2009 Parallel Comput. 35 512Google Scholar

    [11]

    Ciardi A, Lebedev S V, Frank A, Blackman E G, Chittenden J P, Jennings C J, Ampleford D J, Bland S N, Bott S C, Rapley J, Hall G N, Suzuki-Vidal F A, Marocchino A, Lery T, Stehle C 2007 Phys. Plasmas 14 056501Google Scholar

    [12]

    Seyler C E, Martin M R 2011 Phys. Plasmas 18 012703Google Scholar

    [13]

    Ryutov D D 2010 Astrophys. Space Sci. 336 21Google Scholar

    [14]

    Kostyukov I Y, Ryzhkov S V 2011 Plasma Phys. Rep. 37 1092Google Scholar

    [15]

    Weller H G, Tabor G, Jasak H, Fureby C 1998 Comput. Phys. 12 620Google Scholar

    [16]

    Singh R J, Gohil T B 2019 Int. J. Therm. Sci. 146 106096Google Scholar

    [17]

    Xisto C, Páscoa J, Oliveira P, Nicolini D 2010 European Conference on Computational Fluid Dynamics Lisbon, Portugal, June 14–17, 2010

    [18]

    Ryakhovskiy A I, Schmidt A A 2017 J. Phys. Conf. Ser. 929 012098Google Scholar

    [19]

    Chelem Mayigué C, Groll R 2016 Arch. Appl. Mech. 87 667Google Scholar

    [20]

    Kurganov A, Noelle S, Petrova G 2001 SIAM J. Sci. Comput. 23 707Google Scholar

    [21]

    Kurganov A, Tadmor E 2000 J. Comput. Phys. 160 241Google Scholar

    [22]

    Kühn C, Groll R 2021 Comput. Phys. Commun. 262 107853Google Scholar

    [23]

    Brackbill J U, Barnes D C 1980 J. Comput. Phys. 35 426Google Scholar

    [24]

    Orszag S A, Tang C-M 1979 J. Fluid Mech. 90 129Google Scholar

    [25]

    FLASH User’s Guide Version 4.5, flash. uchicago. edu/ site/publications/flash_pubs. shtml [2017-12-18]

    [26]

    Ziegler U 2008 Comput. Phys. Commun. 179 227Google Scholar

    [27]

    Fogang F, Tchuen G, Burtschell Y, Woafo P 2015 Comput. Fluids 114 297Google Scholar

    [28]

    Balsara D S, Spicer D S 1999 J. Comput. Phys. 153 671Google Scholar

    [29]

    Lei Z, Zhao Z H, Yao W P, Xie Y, Jiao J L, Zhou C T, Zhu S P, He X T, Qiao B 2020 Plasma Phys. Contr. F. 62 095020Google Scholar

    [30]

    Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H, Azechi H 2013 Sci. Rep. 3 1170Google Scholar

  • [1] Pu Shi, Huang Xu-Guang. Relativistic spin hydrodynamics. Acta Physica Sinica, 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [2] Zhang Zheng-Wei, Wang Gui-Lin, Zhang Shao-Long, Sun Qi-Zhi, Liu Wei, Zhao Xiao-Ming, Jia Yue-Song, Xie Wei-Ping. Application of electrical action to design and analysis of magnetically driven solid liner implosion. Acta Physica Sinica, 2020, 69(5): 050701. doi: 10.7498/aps.69.20191690
    [3] Peng Xu, Li Bin, Wang Shun-Yao, Rao Guo-Ning, Chen Wang-Hua. Gas-liquid two-phase flow of liquid film breaking process under shock wave. Acta Physica Sinica, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [4] Ding Ming-Song, Fu Yang-Ao-Xiao, Gao Tie-Suo, Dong Wei-Zhong, Jiang Tao, Liu Qing-Zong. Influence of Hall effect on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [5] Zhang Yang, Dai Zi-Huan, Sun Qi-Zhi, Zhang Zheng-Wei, Sun Hai-Quan, Wang Pei, Ding Ning, Xue Chuang, Wang Guan-Qiong, Shen Zhi-Jun, Li Xiao, Wang Jian-Guo. One-dimensional magneto-hydrodynamics simulation of magnetically driven solid liner implosions on FP-1 facility. Acta Physica Sinica, 2018, 67(8): 080701. doi: 10.7498/aps.67.20172300
    [6] Zhang Yang, Xue Chuang, Ding Ning, Liu Hai-Feng, Song Hai-Feng, Zhang Zhao-Hui, Wang Gui-Lin, Sun Shun-Kai, Ning Cheng, Dai Zi-Huan, Shu Xiao-Jian. One-dimensional magneto-hydrodynamic simulation of the magnetic drive isentropic compression experiments on primary test stand. Acta Physica Sinica, 2018, 67(3): 030702. doi: 10.7498/aps.67.20171920
    [7] Che Bi-Xuan, Li Xiao-Kang, Cheng Mou-Sen, Guo Da-Wei, Yang Xiong. A magnetohydrodynamic numerical model with external circuit coupled for pulsed inductive thrusters. Acta Physica Sinica, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [8] Li Hang,  Yang Dong,  Li San-Wei,  Kuang Long-Yu,  Li Li-Ling,  Yuan Zheng,  Zhang Hai-Ying,  Yu Rui-Zhen,  Yang Zhi-Wen,  Chen Tao,  Cao Zhu-Rong,  Pu Yu-Dong,  Miao Wen-Yong,  Wang Feng,  Yang Jia-Min,  Jiang Shao-En,  Ding Yong-Kun,  Hu Guang-Yue,  Zheng Jian. Observation of hydrodynamic phenomena of plasma interaction in hohlraums. Acta Physica Sinica, 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [9] Yuan Xiao-Xia, Zhong Jia-Yong. Simulations for two colliding plasma bubbles embedded into an external magnetic field. Acta Physica Sinica, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [10] Yang Zheng-Quan, Li Cheng, Lei Yi-An. Magnetohydrodynamic simulation of conical plasma compression. Acta Physica Sinica, 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [11] Li Lu-Lu, Zhang Hua, Yang Xian-Jun. Two-dimensional magneto-hydrodynamic description of field reversed configuration. Acta Physica Sinica, 2014, 63(16): 165202. doi: 10.7498/aps.63.165202
    [12] Li Chuan-Qi, Gu Bin, Mu Li-Li, Zhang Qing-Mei, Chen Mei-Hong, Jiang Yong. An MHD simulation study on the location and shape of magnetopause in equatorial plane. Acta Physica Sinica, 2012, 61(21): 219402. doi: 10.7498/aps.61.219402
    [13] Gu Yu-Qiu, Ma Zhan-Nan, Zheng Wu-Di, Wang Xiao-Fang, Wu Yu-Chi, Zhu Bin, Dong Ke-Gong, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Zhang Bao-Han, Jiao Chun-Ye, Wen Xian-Lun, Zang Hua-Ping, Yu Jin-Qing, Wei Lai. Density measurement and MHD simulation ofgas-filled capillary discharge waveguide. Acta Physica Sinica, 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [14] Wen Jian, Tian Huan-Huan, Xue Yu. Lattice hydrodynamic model for pedestrian traffic with the next-nearest-neighbor pedestrian. Acta Physica Sinica, 2010, 59(6): 3817-3823. doi: 10.7498/aps.59.3817
    [15] Meng Li-Min, Teng Ai-Ping, Li Ying-Jun, Cheng Tao, Zhang Jie. Two-dimensional plasma hydrodynamic of X-ray laser based on self-similarity model. Acta Physica Sinica, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [16] Pang Hai-Long, Li Ying-Jun, Lu Xin, Zhang Jie. Hydrodynamic model of transient Ni-like X-ray lasers driven by Gaussian laser pulse. Acta Physica Sinica, 2006, 55(12): 6382-6386. doi: 10.7498/aps.55.6382
    [17] Cang Yu, Lu Xin, Wu Hui-Chun, Zhang Jie. Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics. Acta Physica Sinica, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [18] ZHU WU-BIAO, WANG YOU-NAIN, DENG XIN-LU, MA TENG-CAI. HYDRODYNAMICS SIMULATION OF RF DISCHARGE COURSES WITH NEGATIVE BIAS. Acta Physica Sinica, 1996, 45(7): 1138-1145. doi: 10.7498/aps.45.1138
    [19] YANG WEI-HONG, HU XI-WEI. MAGNETOHYDRODYNAMICS WAVES IN A NONHOMEG-ENEOUS CURRENT-CARRYING CYLINDRICAL PLASMA. Acta Physica Sinica, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
    [20] . Acta Physica Sinica, 1966, 22(9): 1098-1102. doi: 10.7498/aps.22.1098
  • supplement 补充材料20212432.pdf supplement
Metrics
  • Abstract views:  6128
  • PDF Downloads:  175
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2021
  • Accepted Date:  23 February 2022
  • Available Online:  27 May 2022
  • Published Online:  05 June 2022

/

返回文章
返回