Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast terahertz scattering scanning near-field optical microscope

WANG Youwei MA Yihang WANG Jiayi WANG Ziquan RAO Xinyu DAI Mingcong HUANG Ziyu WU Xiaojun

Citation:

Ultrafast terahertz scattering scanning near-field optical microscope

WANG Youwei, MA Yihang, WANG Jiayi, WANG Ziquan, RAO Xinyu, DAI Mingcong, HUANG Ziyu, WU Xiaojun
cstr: 32037.14.aps.74.20250211
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Terahertz (THz) time-domain spectroscopy and imaging techniques on a nanoscale are crucial for material research, device detection, and others. However, traditional far-field THz time-domain spectroscopy faces inherent diffraction limitations, which limits the applications of carrier dynamics analysis that require femtosecond time resolution and nanoscale spatial precision. We present a scattering-type scanning near-field optical microscopy that overcomes these limitations by combining ultrafast THz time-domain spectroscopy with atomic force microscopy (AFM). The utilization of the near-field interaction between the needle tip and the sample surface is demonstrated to facilitate the study of semiconductor materials and devices by using static THz spectroscopy with a lateral spatial resolution of ~60 nm. This, in turn, enables the acquisition of static THz conductivity distributions of the semiconductor materials. Additionally, it facilitates the acquisition of transient conductivity distributions of semiconductor materials and laser THz emission ultrafast via photoexcited transient carrier kinetic processes, which provides substantial support for studying the performances of materials and devices in nanometer spatial resolution, ultrafast time resolution, and THz spectroscopic imaging. The experimental results show that the system has a signal-to-noise ratio as high as 56.34 dB in the static THz time-domain spectral mode, and can effectively extract the fifth-order harmonic signals covering the 0.2–2.2 THz frequency band with a spatial resolution of up to ~60 nm. Carrier excitation and complexation processes in topological insulators are successfully observed by optical pump-THz probe with a time resolution better than 100 fs. Imaging of SRAM samples by the system reveals differences in THz scattering intensity due to non-uniformity in doping concentration, thereby validating its potential application in nanoscale defect detection. This study not only provides an innovative means for studying the nanoscale electrical characterization of semiconductor materials and devices, but also opens a new way for applying the THz technology to interdisciplinary subjects such as nanophotonics and spintronics. In the future, by integrating the superlens technology, optimizing the probe design, and introducing deep learning algorithms, it is expected to further improve the temporal- and spatial-resolution and detection efficiency of the system.
      Corresponding author: WU Xiaojun, xiaojunwu@buaa.edu.cn
    [1]

    陈西良, 马明旺, 杨小敏, 杨康, 吉特, 吴胜伟, 朱智勇 2008 物理化学学报 24 1969Google Scholar

    Chen X L, Ma M W, Yang X M, Yang K, Ji T, Wu S W, Zhu Z Y 2008 Acta Phys. -Chem. Sin. 24 1969Google Scholar

    [2]

    Cocker T L, Jelic V, Hillenbrand R, Hegmann F 2021 Nat. Photon. 15 558Google Scholar

    [3]

    Jepsen P U, Cooke D G, Koch M 2011 Laser Photon. Rev. 5 124Google Scholar

    [4]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543Google Scholar

    [5]

    Kampfrath T, Tanaka K, Nelson, K A 2013 Nat. Photon. 7 680Google Scholar

    [6]

    Lloyd-Hughes J 2005 Phys. Rev. B 71 195301Google Scholar

    [7]

    Beard M C, Turner G M, Schmuttenmaer C A 2000 Phys. Rev. B 62 15764Google Scholar

    [8]

    Xing X, Zhao L T, Zhang Z Y, Liu X K, Zhang K L, Yu Y, Lin X, Chen H Y, Chen J Q, Jin Z M, Xu J H, Ma G H 2017 J. Phys. Chem. C 121 20451Google Scholar

    [9]

    Knoll B, Keilmann F, Kramer A, Guckenberger R 1997 Appl. Phys. Lett. 70 2667Google Scholar

    [10]

    Lahrech A, Bachelot R, Gleyzes P, Boccara A C 1996 Opt. Lett. 21 1315Google Scholar

    [11]

    Knoll B, Keilmann F 1999 Nature 399 134Google Scholar

    [12]

    van der Valk N C J, Planken P C M 2002 Appl. Phys. Lett. 81 1558Google Scholar

    [13]

    Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009Google Scholar

    [14]

    Buersgens F, Kersting R, Chen H T 2006 Appl. Phys. Lett. 88 112

    [15]

    Chen X Z, Liu X, Guo X D, Chen S, Hu H, Nikulina E, Ye X L, Yao Z H, Bechtel H A, Martin M C, Carr G L, Dai Q, Zhuang S L, Hu Q, Zhu Y M, Hillenbrand R, Liu M K, You G J 2020 ACS Photonics 7 687Google Scholar

    [16]

    Plankl M, Faria P E Jr, Mooshammer F, Siday T, Zizlsperger M, Sandner F, Schiegl F, Maier S, Huber M A, Gmitra M, Fabian J, Boland J L, Cocker T L, Huber R 2021 Nat. Photon. 15 594Google Scholar

    [17]

    Chen S, Leng P L, Konečná A, Modin E, Gutierrez-Amigo M, Vicentini E, Martín-García B, Barra-Burillo M, Niehues I, Maciel Escudero C, Xie X Y, Hueso L E, Artacho E, Aizpurua J, Errea I, Vergniory M G, Chuvilin A, Xiu F X, Hillenbrand R 2023 Nat. Mater. 22 860Google Scholar

    [18]

    Cocker T L, Jelic V, Gupta M, Molesky S J, Burgess J A J, de los Reyes G, Titova L V, Tsui Y Y, Freeman M R, Hegmann F A 2013 Nat. Photon. 7 620Google Scholar

    [19]

    Eisele M, Cocker T L, Huber M A, Plankl M, Viti L, Ercolani D, Sorba L, Vitiello M S, Huber R 2014 Nat. Photon. 8 841Google Scholar

    [20]

    Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023 Adv. Mater. 35 2208947Google Scholar

    [21]

    金钻明, 郭颖钰, 季秉煜, 李章顺, 马国宏, 曹世勋, 彭滟, 朱亦鸣, 庄松林 2022 光子学报 51 0751410Google Scholar

    Jin Z M, Guo Y Y, Li B Y, Li Z S, Ma G H, Cao S X, Peng Y, Zhu Y M, Zhuang S L 2022 Acta Photon. Sin. 51 0751410Google Scholar

    [22]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photon. 10 483Google Scholar

    [23]

    Kong D Y, Wu X J, Wang B, Nie T X, Xiao M, Pandey C, Gao Y, Wen L G, Zhao W S, Ruan C J, Miao J G, Li Y T, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [24]

    Wang B, Shan S Y, Wu X J, Wang C, Pandey C, Nie T X, Zhao W S, Li Y T, Miao J G, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [25]

    Chen X H, Wang H T, Wang C, Ouyang C, Wei G S, Nie T X, Zhao W S, Miao J G, Li Y T, Wang L, Wu X J 2021 Adv. Photonics Res. 2 2000099Google Scholar

    [26]

    Liu S J, Guo F W, Li P Y, Wei G S, Wang C, Chen X H, Wang B, Zhao W S, Miao J G, Wang L, Xu Y, Wu X J 2022 Adv. Mater. Interfaces 9 2101296Google Scholar

    [27]

    Chen X H, Wang H T, Liu H J, Wang C, Wei G S, Fang C, Wang H C, Geng C Y, Liu S J, Li P Y, Yu H M, Zhao W S, Miao J G, Li Y T, Wang L, Nie T X, Zhao J M, Wu X J 2022 Adv. Mater. 34 2106172Google Scholar

    [28]

    Liu S J, Lu C H, Fan Z Q, Wang S X, Li P Y, Chen X H, Pan J, Xu Y, Liu Y, Wu X J 2022 Appl. Phys. Lett. 120 172404Google Scholar

    [29]

    Li P Y, Liu S J, Liu Z, Li M, Xu H, Xu Y, Zeng H P, Wu X J 2022 Appl. Phys. Lett. 120 201102Google Scholar

    [30]

    Klarskov P, Kim H, Colvin V L, Mittleman D M 2017 ACS Photonics 4 2676Google Scholar

    [31]

    Pizzuto A, Ma P C, Mittleman D M 2023 Light Sci. Appl. 12 96Google Scholar

    [32]

    Hillenbrand R, Abate Y, Liu M, Chen X, Basov D N 2025 Nat. Rev. Mater. 10 285Google Scholar

    [33]

    von Ribbeck H G, Brehm M, van der Weide D W, Winnerl S, Drachenko O, Helm M, Keilmann F 2008 Opt. Express 16 3430Google Scholar

    [34]

    Siday T, Hale L L, Hermans R I, Mitrofanov O 2020 ACS Photonics 7 596Google Scholar

    [35]

    Mastel S, Lundeberg M B, Alonso-González P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppens F H L, Nikitin A Y, Hillenbrand R 2017 Nano Lett. 17 6526Google Scholar

    [36]

    Maissen C, Chen S, Nikulina E, Govyadinov A, Hillenbrand R 2019 ACS Photonics 6 1279Google Scholar

    [37]

    Moon Y, Lee H, Lim J, Lee G, Kim J, Han H 2023 AIP Adv. 13 065211Google Scholar

    [38]

    Pistore V, Schiattarella C, Viti L, Siday T, Johnston M B, Mitrofanov O, Vitiello M S 2024 Appl. Phys. Lett. 124 221105Google Scholar

    [39]

    Cai J H, Dai M C, Chen S, Chen P, Wang J Q, Xiong H T, Ren Z J, Liu S J, Liu Z K, Wan C H, Bai M, Wu X J 2023 Appl. Phys. Rev. 10 041414Google Scholar

    [40]

    Huang Z Y, Li J, Li P Y, Du L, Dai M C, Cai J H, Ren Z J, Nie T X, Wu X J 2025 iScience 28 111840Google Scholar

    [41]

    Tanaka S, More S D, Murakami J, Itoh M, Fujii Y, Kamada M 2001 Phys. Rev. B 64 155308Google Scholar

    [42]

    Maeda N, Hata H, Osada N, Shen Q, Toyoda T, Kuwahara S, Katayama K 2013 Phys. Chem. Chem. Phys. 15 11006Google Scholar

    [43]

    Shingai D, Ide Y, Sohn W Y, Katayama K 2018 Phys. Chem. Chem. Phys. 20 3484Google Scholar

    [44]

    Huang S Y, Wang C, Xie Y G, Yu B Y, Yan H G 2023 Photonics Insights 2 R03Google Scholar

    [45]

    Astratov V N, Sahel Y B, Eldar Y C, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao Y-T, Hsieh C-L, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked N T, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng J-X, Kariman B S, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang G-J, Chu S-W, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen M J, Stanciu S G, Smolyaninova V N, Smolyaninov I I, Leonhardt U, Sahebdivan S, Wang Z, Luk'yanchuk B, Wu L, Maslov A V, Jin B, Simovski C R, Perrin S, Montgomery P, Lecler S 2023 Laser & Photonics Rev. 17 2200029

    [46]

    陶伟灏, 赵书浩, 董涵瑾, 张国锋, 杨树明 2024 计量科学与技术 68 76Google Scholar

    Tao W H, Zhao S H, Dong H J, Zhang G F, Yang S M 2024 Metro. Sci. Technol. 68 76Google Scholar

    [47]

    Park Y, Depeursinge C, Popescu G 2018 Nat. Photon. 12 578Google Scholar

    [48]

    Paturzo M, Merola F, Grilli S, Nicola S D, Finizio A, Ferraro P 2008 Opt. Express 16 17107Google Scholar

    [49]

    Jiaji L, Alex C M, Yunzhe L, Qian C, Chao Z, Lei T 2019 Adv. Photon. 1 066004

    [50]

    Lü X, Röben B, Biermann K, Wubs J R, Macherius U, Weltmann K D, van Helden J H, Schrottke L, Grahn H T 2023 Semicond. Sci. Technol. 38 035003Google Scholar

    [51]

    Dean P, Valavanis A, Keeley J, Bertling K, Lim Y L, Alhathlool R, Burnett A D, Li L H, Khanna S P, Indjin D, Taimre T, Rakić A D, Linfield E H, Davies A G 2014 J. Phys. D: Appl. Phys. 47 374008Google Scholar

    [52]

    Hübers H W, Eichholz R, Pavlov S G, Richter H 2013 J. Infrared Milli. Terahz. Waves 34 325Google Scholar

  • 图 1  超快THz s-SNOM系统示意图, laser为光纤飞秒激光器, SHG为二次谐波转化器, HWP为半波片, OI为光隔离器, M1—M14为光学反射镜, BE为扩束器, S1为分束器, AT为发射光导天线, OAP为离轴抛物面镜, AR为接收光导天线, L1和L2为镜头

    Figure 1.  Schematic diagram of the ultrafast THz s-SNOM system. Laser represents the fiber femtosecond laser, SHG represents second harmonic trigger, HWP represents half-wave plate, OI represents optical isolator, M1–M14 represent mirror, BE represents beam spreader, S1 represents semi transparent and semi reflective mirror, AT represents transmitter antenna, OAP represents off-axis parabolic mirror, AR represents receiver antenna, L1 and L2 represent lenses.

    图 2  SNOM针尖原理示意图

    Figure 2.  Schematic diagram operational principle of the SNOM tip.

    图 3  SRAM样品的高度信息 (a)表面光学照片; (b)样品的三维立体图像; (c) AFM高度形貌

    Figure 3.  Height information of SRAM sample: (a) Optical photographs of the surface taken with the cantilever; (b) three-dimensional images of the sample; (c) AFM height topography of the sample.

    图 4  静态THz时域光谱扫描模式示意图 (a)时域波形; (b)频域波形; (c)不同阶数信号峰峰值

    Figure 4.  Static THz time-domain spectroscopy scanning pattern mapping: (a) Time-domain waveforms; (b) frequency-domain waveforms; (c) peak value of signals at different orders.

    图 5  样品SRAM的THz散射强度映射及拓扑绝缘体的光泵浦-THz探测响应 (a) THz散射时域波形; (b)同一区域的THz散射强度图; (c)拓扑绝缘体的光泵浦-THz探测时域波形; (d)拓扑绝缘体光激发前THz散射强度图; (e)拓扑绝缘体光激发后散射强度图

    Figure 5.  THz scattering intensity mapping of SRAM and optical pump-THz probe response of topological insulator: (a) THz scattering time-domain waveforms; (b) THz scattering intensity map of the same region; (c) optical pump-THz probe time-domain waveforms of topological insulator; (d) topological insulator morphology before photoexcitation; (e) topological insulator morphology after photoexcitation.

    图 6  InAs样品THz发射信号 (a)二阶时域波形; (b)二阶频域波形; (c)高阶时域波形; (d)静态THz时域光谱散射扫描成像图; (e) AFM高度形貌

    Figure 6.  THz emission signals of the InAs sample: (a) Second-order time-domain waveform; (b) second-order frequency-domain waveform; (c) higher-order time-domain waveforms; (d) static THz time-domain spectral scattering scanning imaging; (e) AFM height topography of the sample.

  • [1]

    陈西良, 马明旺, 杨小敏, 杨康, 吉特, 吴胜伟, 朱智勇 2008 物理化学学报 24 1969Google Scholar

    Chen X L, Ma M W, Yang X M, Yang K, Ji T, Wu S W, Zhu Z Y 2008 Acta Phys. -Chem. Sin. 24 1969Google Scholar

    [2]

    Cocker T L, Jelic V, Hillenbrand R, Hegmann F 2021 Nat. Photon. 15 558Google Scholar

    [3]

    Jepsen P U, Cooke D G, Koch M 2011 Laser Photon. Rev. 5 124Google Scholar

    [4]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543Google Scholar

    [5]

    Kampfrath T, Tanaka K, Nelson, K A 2013 Nat. Photon. 7 680Google Scholar

    [6]

    Lloyd-Hughes J 2005 Phys. Rev. B 71 195301Google Scholar

    [7]

    Beard M C, Turner G M, Schmuttenmaer C A 2000 Phys. Rev. B 62 15764Google Scholar

    [8]

    Xing X, Zhao L T, Zhang Z Y, Liu X K, Zhang K L, Yu Y, Lin X, Chen H Y, Chen J Q, Jin Z M, Xu J H, Ma G H 2017 J. Phys. Chem. C 121 20451Google Scholar

    [9]

    Knoll B, Keilmann F, Kramer A, Guckenberger R 1997 Appl. Phys. Lett. 70 2667Google Scholar

    [10]

    Lahrech A, Bachelot R, Gleyzes P, Boccara A C 1996 Opt. Lett. 21 1315Google Scholar

    [11]

    Knoll B, Keilmann F 1999 Nature 399 134Google Scholar

    [12]

    van der Valk N C J, Planken P C M 2002 Appl. Phys. Lett. 81 1558Google Scholar

    [13]

    Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009Google Scholar

    [14]

    Buersgens F, Kersting R, Chen H T 2006 Appl. Phys. Lett. 88 112

    [15]

    Chen X Z, Liu X, Guo X D, Chen S, Hu H, Nikulina E, Ye X L, Yao Z H, Bechtel H A, Martin M C, Carr G L, Dai Q, Zhuang S L, Hu Q, Zhu Y M, Hillenbrand R, Liu M K, You G J 2020 ACS Photonics 7 687Google Scholar

    [16]

    Plankl M, Faria P E Jr, Mooshammer F, Siday T, Zizlsperger M, Sandner F, Schiegl F, Maier S, Huber M A, Gmitra M, Fabian J, Boland J L, Cocker T L, Huber R 2021 Nat. Photon. 15 594Google Scholar

    [17]

    Chen S, Leng P L, Konečná A, Modin E, Gutierrez-Amigo M, Vicentini E, Martín-García B, Barra-Burillo M, Niehues I, Maciel Escudero C, Xie X Y, Hueso L E, Artacho E, Aizpurua J, Errea I, Vergniory M G, Chuvilin A, Xiu F X, Hillenbrand R 2023 Nat. Mater. 22 860Google Scholar

    [18]

    Cocker T L, Jelic V, Gupta M, Molesky S J, Burgess J A J, de los Reyes G, Titova L V, Tsui Y Y, Freeman M R, Hegmann F A 2013 Nat. Photon. 7 620Google Scholar

    [19]

    Eisele M, Cocker T L, Huber M A, Plankl M, Viti L, Ercolani D, Sorba L, Vitiello M S, Huber R 2014 Nat. Photon. 8 841Google Scholar

    [20]

    Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023 Adv. Mater. 35 2208947Google Scholar

    [21]

    金钻明, 郭颖钰, 季秉煜, 李章顺, 马国宏, 曹世勋, 彭滟, 朱亦鸣, 庄松林 2022 光子学报 51 0751410Google Scholar

    Jin Z M, Guo Y Y, Li B Y, Li Z S, Ma G H, Cao S X, Peng Y, Zhu Y M, Zhuang S L 2022 Acta Photon. Sin. 51 0751410Google Scholar

    [22]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photon. 10 483Google Scholar

    [23]

    Kong D Y, Wu X J, Wang B, Nie T X, Xiao M, Pandey C, Gao Y, Wen L G, Zhao W S, Ruan C J, Miao J G, Li Y T, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [24]

    Wang B, Shan S Y, Wu X J, Wang C, Pandey C, Nie T X, Zhao W S, Li Y T, Miao J G, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [25]

    Chen X H, Wang H T, Wang C, Ouyang C, Wei G S, Nie T X, Zhao W S, Miao J G, Li Y T, Wang L, Wu X J 2021 Adv. Photonics Res. 2 2000099Google Scholar

    [26]

    Liu S J, Guo F W, Li P Y, Wei G S, Wang C, Chen X H, Wang B, Zhao W S, Miao J G, Wang L, Xu Y, Wu X J 2022 Adv. Mater. Interfaces 9 2101296Google Scholar

    [27]

    Chen X H, Wang H T, Liu H J, Wang C, Wei G S, Fang C, Wang H C, Geng C Y, Liu S J, Li P Y, Yu H M, Zhao W S, Miao J G, Li Y T, Wang L, Nie T X, Zhao J M, Wu X J 2022 Adv. Mater. 34 2106172Google Scholar

    [28]

    Liu S J, Lu C H, Fan Z Q, Wang S X, Li P Y, Chen X H, Pan J, Xu Y, Liu Y, Wu X J 2022 Appl. Phys. Lett. 120 172404Google Scholar

    [29]

    Li P Y, Liu S J, Liu Z, Li M, Xu H, Xu Y, Zeng H P, Wu X J 2022 Appl. Phys. Lett. 120 201102Google Scholar

    [30]

    Klarskov P, Kim H, Colvin V L, Mittleman D M 2017 ACS Photonics 4 2676Google Scholar

    [31]

    Pizzuto A, Ma P C, Mittleman D M 2023 Light Sci. Appl. 12 96Google Scholar

    [32]

    Hillenbrand R, Abate Y, Liu M, Chen X, Basov D N 2025 Nat. Rev. Mater. 10 285Google Scholar

    [33]

    von Ribbeck H G, Brehm M, van der Weide D W, Winnerl S, Drachenko O, Helm M, Keilmann F 2008 Opt. Express 16 3430Google Scholar

    [34]

    Siday T, Hale L L, Hermans R I, Mitrofanov O 2020 ACS Photonics 7 596Google Scholar

    [35]

    Mastel S, Lundeberg M B, Alonso-González P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppens F H L, Nikitin A Y, Hillenbrand R 2017 Nano Lett. 17 6526Google Scholar

    [36]

    Maissen C, Chen S, Nikulina E, Govyadinov A, Hillenbrand R 2019 ACS Photonics 6 1279Google Scholar

    [37]

    Moon Y, Lee H, Lim J, Lee G, Kim J, Han H 2023 AIP Adv. 13 065211Google Scholar

    [38]

    Pistore V, Schiattarella C, Viti L, Siday T, Johnston M B, Mitrofanov O, Vitiello M S 2024 Appl. Phys. Lett. 124 221105Google Scholar

    [39]

    Cai J H, Dai M C, Chen S, Chen P, Wang J Q, Xiong H T, Ren Z J, Liu S J, Liu Z K, Wan C H, Bai M, Wu X J 2023 Appl. Phys. Rev. 10 041414Google Scholar

    [40]

    Huang Z Y, Li J, Li P Y, Du L, Dai M C, Cai J H, Ren Z J, Nie T X, Wu X J 2025 iScience 28 111840Google Scholar

    [41]

    Tanaka S, More S D, Murakami J, Itoh M, Fujii Y, Kamada M 2001 Phys. Rev. B 64 155308Google Scholar

    [42]

    Maeda N, Hata H, Osada N, Shen Q, Toyoda T, Kuwahara S, Katayama K 2013 Phys. Chem. Chem. Phys. 15 11006Google Scholar

    [43]

    Shingai D, Ide Y, Sohn W Y, Katayama K 2018 Phys. Chem. Chem. Phys. 20 3484Google Scholar

    [44]

    Huang S Y, Wang C, Xie Y G, Yu B Y, Yan H G 2023 Photonics Insights 2 R03Google Scholar

    [45]

    Astratov V N, Sahel Y B, Eldar Y C, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao Y-T, Hsieh C-L, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked N T, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng J-X, Kariman B S, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang G-J, Chu S-W, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen M J, Stanciu S G, Smolyaninova V N, Smolyaninov I I, Leonhardt U, Sahebdivan S, Wang Z, Luk'yanchuk B, Wu L, Maslov A V, Jin B, Simovski C R, Perrin S, Montgomery P, Lecler S 2023 Laser & Photonics Rev. 17 2200029

    [46]

    陶伟灏, 赵书浩, 董涵瑾, 张国锋, 杨树明 2024 计量科学与技术 68 76Google Scholar

    Tao W H, Zhao S H, Dong H J, Zhang G F, Yang S M 2024 Metro. Sci. Technol. 68 76Google Scholar

    [47]

    Park Y, Depeursinge C, Popescu G 2018 Nat. Photon. 12 578Google Scholar

    [48]

    Paturzo M, Merola F, Grilli S, Nicola S D, Finizio A, Ferraro P 2008 Opt. Express 16 17107Google Scholar

    [49]

    Jiaji L, Alex C M, Yunzhe L, Qian C, Chao Z, Lei T 2019 Adv. Photon. 1 066004

    [50]

    Lü X, Röben B, Biermann K, Wubs J R, Macherius U, Weltmann K D, van Helden J H, Schrottke L, Grahn H T 2023 Semicond. Sci. Technol. 38 035003Google Scholar

    [51]

    Dean P, Valavanis A, Keeley J, Bertling K, Lim Y L, Alhathlool R, Burnett A D, Li L H, Khanna S P, Indjin D, Taimre T, Rakić A D, Linfield E H, Davies A G 2014 J. Phys. D: Appl. Phys. 47 374008Google Scholar

    [52]

    Hübers H W, Eichholz R, Pavlov S G, Richter H 2013 J. Infrared Milli. Terahz. Waves 34 325Google Scholar

  • [1] Zhang Yang, Zhang Zhi-Hao, Wang Yu-Jian, Xue Xiao-Lan, Chen Ling-Xiu, Shi Li-Wei. Polarization modulation scanning optical microscopy method. Acta Physica Sinica, 2024, 73(15): 157801. doi: 10.7498/aps.73.20240688
    [2] Wang Xin, Wang Jun-Lin. Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band. Acta Physica Sinica, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [3] Cheng Zhe. Thermal science and engineering in third-generation semiconductor materials and devices. Acta Physica Sinica, 2021, 70(23): 236502. doi: 10.7498/aps.70.20211662
    [4] Zhang Zhuo-Cheng, Wang Yue-Ying, Zhang Xiao-Qiu-Yan, Zhang Tian-Yu, Xu Xing-Xing, Zhao Tao, Gong Yu-Bin, Wei Yan-Yu, Hu Min. Tip-sample interactions in terahertz scattering scanning near-field optical microscopy and its influences. Acta Physica Sinica, 2021, 70(24): 248703. doi: 10.7498/aps.70.20211715
    [5] Wang Mei-Chang, Yu Bin, Zhang Wei, Lin Dan-Ying, Qu Jun-Le. Digital line scanning fluorescence microscopy based on digital micromirror device. Acta Physica Sinica, 2020, 69(23): 238701. doi: 10.7498/aps.69.20200908
    [6] Jiang Feng-Yi, Liu Jun-Lin, Zhang Jian-Li, Xu Long-Quan, Ding Jie, Wang Guang-Xu, Quan Zhi-Jue, Wu Xiao-Ming, Zhao Peng,  Liu Bi-Yu,  Li Dan, Wang Xiao-Lan, Zheng Chang-Da, Pan Shuan, Fang Fang, Mo Chun-Lan. Semiconductor yellow light-emitting diodes. Acta Physica Sinica, 2019, 68(16): 168503. doi: 10.7498/aps.68.20191044
    [7] Wang Lei, Xiao Rui-Wen, Ge Shi-Jun, Shen Zhi-Xiong, Lü Peng, Hu Wei, Lu Yan-Qing. Research progress of terahertz liquid crystal materials and devices. Acta Physica Sinica, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [8] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [9] Yang Yun-Chang, Wu Bin, Liu Yun-Qi. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices. Acta Physica Sinica, 2017, 66(21): 218101. doi: 10.7498/aps.66.218101
    [10] Cao Xing-Zhong, Song Li-Gang, Jin Shuo-Xue, Zhang Ren-Gang, Wang Bao-Yi, Wei Long. Advances in applications of positron annihilation spectroscopy to investigating semiconductor microstructures. Acta Physica Sinica, 2017, 66(2): 027801. doi: 10.7498/aps.66.027801
    [11] Chi Lang, Fei Hong-Tao, Wang Teng, Yi Jian-Peng, Fang Yue-Ting, Xia Rui-Dong. A highly sensitive chemosensor for solution based on organic semiconductor laser gain media. Acta Physica Sinica, 2016, 65(6): 064202. doi: 10.7498/aps.65.064202
    [12] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [13] Liu Hao, Xue Yu-Ming, Qiao Zai-Xiang, Li Wei, Zhang Chao, Yin Fu-Hong, Feng Shao-Jun. Progress of application research on Cu2ZnSnS4 thin film and its device. Acta Physica Sinica, 2015, 64(6): 068801. doi: 10.7498/aps.64.068801
    [14] Dai Yu, Zhang Jian-Xun. Reduction of 1/f noise in semiconductor devices based on wavelet transform and Wiener filter. Acta Physica Sinica, 2011, 60(11): 110516. doi: 10.7498/aps.60.110516
    [15] Wang Guo-Jun, Wu Shi-Fa, Li Xu-Feng, Li Rui, Duan Jian-Min, Pan Shi. Numerical simulation of the near-field distribution of light spot of aperture pyramid-type optical probe with a metal tip. Acta Physica Sinica, 2010, 59(1): 192-198. doi: 10.7498/aps.59.192
    [16] Chen Hua, Wang Li. Coherent transmission of terahertz wave through randomly packed subwavelength-sized aluminium particles. Acta Physica Sinica, 2009, 58(12): 8271-8274. doi: 10.7498/aps.58.8271
    [17] Li Zhi, Zhang Jia-Sen, Yang Jing, Gong Qi-Huang. Realization of femtosecond-resolved near-field optical system and its application. Acta Physica Sinica, 2007, 56(6): 3630-3635. doi: 10.7498/aps.56.3630
    [18] Xu Xing-Sheng, Xiong Zhi-Gang, Jin Ai-Zi, Chen Hong-Da, Zhang Dao-Zhong. Fabrication of photonic crystal on semiconductor materials by using focued ion-beam. Acta Physica Sinica, 2007, 56(2): 916-921. doi: 10.7498/aps.56.916
    [19] Liu Xue-Rong, Hu Bo, Liu Wen-Han, Gao Chen. The theoretical calibration coefficient in the measurement of nonlinear dielectric constant with a scanning tip microwave near-field microscopy. Acta Physica Sinica, 2003, 52(1): 34-38. doi: 10.7498/aps.52.34
    [20] WANG ZI-YANG, LI QIN, ZHAO JUN, GUO JI-HUA. STUDY OF THE DISTRIBUTION OF LIGHT INTENSITY OF THE FIBER PROBE OF TRANSMISSION SCANNING NEAR FIELD OPTICAL MICROSCOPY AND THE DISTRIBUTION OF EXCITED FLUORESCE NT MOLECULES. Acta Physica Sinica, 2000, 49(10): 1959-1964. doi: 10.7498/aps.49.1959
Metrics
  • Abstract views:  390
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  21 February 2025
  • Accepted Date:  11 April 2025
  • Available Online:  13 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回