Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics study on influence of geometric characteristics of microstructure surface on steam condensation

GONG Luyuan WEI Xinding HAN Tao GUO Yali SHEN Shengqiang

Citation:

Molecular dynamics study on influence of geometric characteristics of microstructure surface on steam condensation

GONG Luyuan, WEI Xinding, HAN Tao, GUO Yali, SHEN Shengqiang
cstr: 32037.14.aps.74.20250324
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Steam condensation is a common physical phenomenon in nature and plays an important role in various industrial processes. Therefore, the regulation mechanism of steam condensation process has been widely concerned by scholars in recent years. In this paper, the molecular dynamics simulation method is used to study the vapor condensation behavior of copper surface by establishing a secondary microstructure model. The influences of different geometrical characteristics on the condensation process are discussed by analyzing the nucleation and merging time of droplets, the vapor condensation snapshot, the total number of condensed water molecules, and the total number of water molecules in the maximum condensed drop. With the increase of column width or column height ratio, the molecular weight of the total condensed water first increases and then decreases.
      Corresponding author: GUO Yali, ylguo@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52106075).
    [1]

    Guelen S C 2013 J. Eng. Gas Turb. Power 135 12

    [2]

    Dykas S, Majkut M, Smołka K, Strozik M 2018 Proc. Institut. Mech. Eng. A J. Pow. 232 501Google Scholar

    [3]

    周大平 2023 辽宁化工 52 609Google Scholar

    Zhou D P 2023 Liaoning Chem. Ind. 52 609Google Scholar

    [4]

    王玉东 2018 化工设计通讯 44 206Google Scholar

    Wang Y D 2018 Chem. Eng. Design Commun. 44 206Google Scholar

    [5]

    蒋树杨 2019 化工与医药工程 40 24

    Jiang S Y 2019 Chem. Pharmaceut. Eng. 40 24

    [6]

    Esmaeeli A, Passandideh-Fard M 2020 IJST T. Mech. Eng. 45 535

    [7]

    Gordon B E, Karabulin V A, Krasnokutski A S, Matyushenko V I, Khodos I I 2017 High Energy Chem. 51 245Google Scholar

    [8]

    梅路遥2021硕士学位论文 (南昌: 南昌大学)

    Mei L Y 2021 M. S. Thesis (Nanchang: Nanchang University

    [9]

    温荣福, 马学虎, 兰忠, 彭本利, 徐威 2015 科学通报 60 2784Google Scholar

    Wen R F, Ma X H, Lan Z, Peng B L, Xu W 2015 Chin. Sci. Bull. 60 2784Google Scholar

    [10]

    兰忠, 朱霞, 彭本利, 林勐, 马学虎 2012 物理学报 61 150508Google Scholar

    Lan Z, Zhu X, Peng B L, Lin M, Ma X H 2012 Acta Phys. Sin. 61 150508Google Scholar

    [11]

    胡梦丹, 张庆宇, 孙东科, 朱鸣芳 2019 物理学报 68 030501Google Scholar

    Hu M D, Zhang Q Y, Sun D K, Zhu M F 2019 Acta Phys. Sin. 68 030501Google Scholar

    [12]

    范增华, 荣伟彬, 刘紫潇, 高军, 田业冰 2020 物理学报 69 186801Google Scholar

    Fan Z H, Rong W B, Liu Z X, Gao J, Tian Y B 2020 Acta Phys. Sin. 69 186801Google Scholar

    [13]

    李春曦, 马成, 叶学民 2023 物理学报 72 024702Google Scholar

    Li C X, Ma C, Ye X M 2023 Acta Phys. Sin. 72 024702Google Scholar

    [14]

    Ouyang Y Y 2017 M. S. Thesis (Beijing: North China Electric Power University)](in Chinese)[欧阳袁渊2017硕士学位论文 (北京: 华北电力大学)]

    [15]

    费媛媛, 贾志海, 肖昌昊, 张涛, 陈梦谣 2019 工程热物理学报 40 926

    Fei Y Y, Jia Z H, Xiao C H, Zhang T, Chen M Y 2019 J. Eng. Thermophys. 40 926

    [16]

    Wang X, Xu B, Liu Q S, Yang Y, Chen Z Q 2021 Int. J. Heat Mass 177 121526Google Scholar

    [17]

    Aminian E, Kamali M, Vatanjoo E, Saffari H 2022 Heat Mass Trans. 58 1Google Scholar

    [18]

    王亚明, 刘永利, 张林 2019 物理学报 68 166402Google Scholar

    Wang Y M, Liu Y L, Zhang L 2019 Acta Phys. Sin. 68 166402Google Scholar

    [19]

    徐珂, 许龙, 周光平 2021 物理学报 70 194301Google Scholar

    Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 194301Google Scholar

    [20]

    李文, 马骁婧, 徐进良, 王艳, 雷俊鹏 2021 物理学报 70 126101Google Scholar

    Li W, Ma X J, Xu J L, Wang Y, Lei J P 2021 Acta Phys. Sin. 70 126101Google Scholar

    [21]

    齐凯, 朱星光, 王军, 夏国栋 2024 物理学报 73 156801Google Scholar

    Qi K, Zhu X G, Wang J, Xia G D 2024 Acta Phys. Sin. 73 156801Google Scholar

    [22]

    Huang D B, Quan X J, Cheng P 2018 Int. Commun. Heat Mass 98 232Google Scholar

    [23]

    王浩杰, 曹自洋, 张洋精, 朱译文 2022 苏州科技大学学报(工程技术版) 35 68

    Wang H J, Cao Z Y, Zhang Y J, Zhu Y W 2022 J. Suzhou Univ. Sci. Techn. (Eng. Techn. Ed.) 35 68

    [24]

    Wang Z, Wang S, Wang D Q, Yang Y R, Wang X D, Lee D J 2023 Int. J. Heat Mass 12 29

    [25]

    Shi Z Y, Zhong S H, Zhang B, Wen Z C, Chen L F 2024 Int. J. Heat Mass 228 11

    [26]

    Nurrohman N, Almisbahi H, Tocci E, et al. 2024 Nanomaterials 14 1137Google Scholar

    [27]

    Wei L, Wang P, Chen X Y, Chen Z 2024 Surf. Interfaces 52 104981Google Scholar

    [28]

    Jones J E 1924 Proc. Roy. Soc. A 106 463

    [29]

    杨世铭, 陶文铨 2006 传热学(第4版) (北京: 高等教育出版社) 第563页

    Yang S M, Tao W Q 2006 Heat Transfer (4th Ed.) (Beijing: Higher Education Press) p563

  • 图 1  二级微结构基础单元

    Figure 1.  Secondary microstructural base unit.

    图 2  不同微柱几何表面俯视图和正视图 (a) 改变柱宽度; (b) 改变柱间距; (c) 改变柱高度; (d) 改变柱形状

    Figure 2.  Top view and front view of different micro-column geometric surfaces: (a) Change the width of the column; (b) change of column spacing; (c) change the height of the column; (d) change the shape of the column.

    图 3  二级微结构表面水蒸气凝结的物理模型

    Figure 3.  Physical model of steam condensation on the surface of secondary microstructure.

    图 4  接触角随势阱深度变化图

    Figure 4.  Diagram of contact Angle variation with potential well depth.

    图 5  不同形态下的液滴形态主视图 (a) 初始形态下的正方体液滴; (b) 无外界作用的液滴形态; (c) 有铜板作用的液滴形态

    Figure 5.  Droplet morphology in different morphology main view: (a) Cuboid droplet in initial morphology; (b) droplet morphology without external action; (c) droplet morphology with copper plate action.

    图 6  铜板壁面真实层温度随时间的变化

    Figure 6.  Change of real layer temperature of copper plate wall with time.

    图 7  凝结水的密度随时间的变化

    Figure 7.  Change of the density of condensate with time.

    图 8  不同柱宽度条件下, 凝结水分子总数与时间的关系

    Figure 8.  Relationship between the total number of condensed water molecules and time under different column widths.

    图 9  不同柱高比条件下, 凝结水分子总数与时间的关系

    Figure 9.  The relationship between the total number of condensed water molecules and time under different column height ratio.

    图 10  不同柱结构条件下, 凝结水分子总数与时间的关系

    Figure 10.  Relationship between the total number of condensed water molecules and time under different column structure conditions.

    图 11  液滴成核时间随柱宽度的变化

    Figure 11.  Change of droplet nucleation time with column width.

    图 12  液滴成核时间随柱间距的变化

    Figure 12.  Change of droplet nucleation time with column spacing.

    图 13  液滴成核时间随柱结构的变化

    Figure 13.  Change of droplet nucleation time with column structure.

    图 14  不同柱宽度条件下, 二级微结构表面不同时刻液滴行为快照

    Figure 14.  A snapshot of droplet behavior on the surface of secondary microstructure at different times under different column widths.

    图 15  不同柱间距条件下, 二级微结构表面不同时刻液滴行为快照

    Figure 15.  A snapshot of droplet behavior on the surface of secondary microstructures at different times under different column spacing conditions.

    图 16  不同柱间距条件下, 二级微结构表面不同时刻液滴行为快照

    Figure 16.  A snapshot of droplet behavior on the surface of secondary microstructures at different times under different column spacing conditions.

    图 17  不同柱宽度条件下, 最大凝结液滴内水分子总数与时间的关系

    Figure 17.  Relationship between the total number of water molecules in the maximum condensed drop and time under different column widths.

    图 18  不同柱间距条件下, 最大凝结液滴内水分子总数与时间的关系

    Figure 18.  Relationship between the total number of water molecules in the maximum condensed drop and time at different column spacing.

    图 19  不同柱高比条件下, 最大凝结液滴内水分子总数与时间的关系

    Figure 19.  Relationship between the total number of water molecules in the maximum condensed drop and time under different column height ratios.

    表 1  L-J势函数内各原子模拟参数

    Table 1.  Simulation parameters of each atom in L-J potential function.

    ε/eV σ 电荷/e
    H—H 0 0 0.5242
    O—O 0.0070 3.1644 –1.0484
    Cu-1—H 0 0 0
    Cu-1—O 0.0216 2.2307 0
    Cu-1—Cu-1 0.5203 2.2973 0
    Cu-2—H 0 0 0
    Cu-2—O 0.0144 2.2307 0
    Cu-2—Cu-2 0.5203 2.2973 0
    DownLoad: CSV
  • [1]

    Guelen S C 2013 J. Eng. Gas Turb. Power 135 12

    [2]

    Dykas S, Majkut M, Smołka K, Strozik M 2018 Proc. Institut. Mech. Eng. A J. Pow. 232 501Google Scholar

    [3]

    周大平 2023 辽宁化工 52 609Google Scholar

    Zhou D P 2023 Liaoning Chem. Ind. 52 609Google Scholar

    [4]

    王玉东 2018 化工设计通讯 44 206Google Scholar

    Wang Y D 2018 Chem. Eng. Design Commun. 44 206Google Scholar

    [5]

    蒋树杨 2019 化工与医药工程 40 24

    Jiang S Y 2019 Chem. Pharmaceut. Eng. 40 24

    [6]

    Esmaeeli A, Passandideh-Fard M 2020 IJST T. Mech. Eng. 45 535

    [7]

    Gordon B E, Karabulin V A, Krasnokutski A S, Matyushenko V I, Khodos I I 2017 High Energy Chem. 51 245Google Scholar

    [8]

    梅路遥2021硕士学位论文 (南昌: 南昌大学)

    Mei L Y 2021 M. S. Thesis (Nanchang: Nanchang University

    [9]

    温荣福, 马学虎, 兰忠, 彭本利, 徐威 2015 科学通报 60 2784Google Scholar

    Wen R F, Ma X H, Lan Z, Peng B L, Xu W 2015 Chin. Sci. Bull. 60 2784Google Scholar

    [10]

    兰忠, 朱霞, 彭本利, 林勐, 马学虎 2012 物理学报 61 150508Google Scholar

    Lan Z, Zhu X, Peng B L, Lin M, Ma X H 2012 Acta Phys. Sin. 61 150508Google Scholar

    [11]

    胡梦丹, 张庆宇, 孙东科, 朱鸣芳 2019 物理学报 68 030501Google Scholar

    Hu M D, Zhang Q Y, Sun D K, Zhu M F 2019 Acta Phys. Sin. 68 030501Google Scholar

    [12]

    范增华, 荣伟彬, 刘紫潇, 高军, 田业冰 2020 物理学报 69 186801Google Scholar

    Fan Z H, Rong W B, Liu Z X, Gao J, Tian Y B 2020 Acta Phys. Sin. 69 186801Google Scholar

    [13]

    李春曦, 马成, 叶学民 2023 物理学报 72 024702Google Scholar

    Li C X, Ma C, Ye X M 2023 Acta Phys. Sin. 72 024702Google Scholar

    [14]

    Ouyang Y Y 2017 M. S. Thesis (Beijing: North China Electric Power University)](in Chinese)[欧阳袁渊2017硕士学位论文 (北京: 华北电力大学)]

    [15]

    费媛媛, 贾志海, 肖昌昊, 张涛, 陈梦谣 2019 工程热物理学报 40 926

    Fei Y Y, Jia Z H, Xiao C H, Zhang T, Chen M Y 2019 J. Eng. Thermophys. 40 926

    [16]

    Wang X, Xu B, Liu Q S, Yang Y, Chen Z Q 2021 Int. J. Heat Mass 177 121526Google Scholar

    [17]

    Aminian E, Kamali M, Vatanjoo E, Saffari H 2022 Heat Mass Trans. 58 1Google Scholar

    [18]

    王亚明, 刘永利, 张林 2019 物理学报 68 166402Google Scholar

    Wang Y M, Liu Y L, Zhang L 2019 Acta Phys. Sin. 68 166402Google Scholar

    [19]

    徐珂, 许龙, 周光平 2021 物理学报 70 194301Google Scholar

    Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 194301Google Scholar

    [20]

    李文, 马骁婧, 徐进良, 王艳, 雷俊鹏 2021 物理学报 70 126101Google Scholar

    Li W, Ma X J, Xu J L, Wang Y, Lei J P 2021 Acta Phys. Sin. 70 126101Google Scholar

    [21]

    齐凯, 朱星光, 王军, 夏国栋 2024 物理学报 73 156801Google Scholar

    Qi K, Zhu X G, Wang J, Xia G D 2024 Acta Phys. Sin. 73 156801Google Scholar

    [22]

    Huang D B, Quan X J, Cheng P 2018 Int. Commun. Heat Mass 98 232Google Scholar

    [23]

    王浩杰, 曹自洋, 张洋精, 朱译文 2022 苏州科技大学学报(工程技术版) 35 68

    Wang H J, Cao Z Y, Zhang Y J, Zhu Y W 2022 J. Suzhou Univ. Sci. Techn. (Eng. Techn. Ed.) 35 68

    [24]

    Wang Z, Wang S, Wang D Q, Yang Y R, Wang X D, Lee D J 2023 Int. J. Heat Mass 12 29

    [25]

    Shi Z Y, Zhong S H, Zhang B, Wen Z C, Chen L F 2024 Int. J. Heat Mass 228 11

    [26]

    Nurrohman N, Almisbahi H, Tocci E, et al. 2024 Nanomaterials 14 1137Google Scholar

    [27]

    Wei L, Wang P, Chen X Y, Chen Z 2024 Surf. Interfaces 52 104981Google Scholar

    [28]

    Jones J E 1924 Proc. Roy. Soc. A 106 463

    [29]

    杨世铭, 陶文铨 2006 传热学(第4版) (北京: 高等教育出版社) 第563页

    Yang S M, Tao W Q 2006 Heat Transfer (4th Ed.) (Beijing: Higher Education Press) p563

  • [1] Qi Kai, Zhu Xing-Guang, Wang Jun, Xia Guo-Dong. Heat transfer characteristics of solid-liquid interface on nanostructure surface under external electric field. Acta Physica Sinica, 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [2] Zhang Chao, Bu Long-Xiang, Zhang Zhi-Chao, Fan Zhao-Xia, Fan Feng-Xian. Molecular dynamics study on the surface tension of succinic acid-water nano-aerosol droplets. Acta Physica Sinica, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [3] Zhou Ming-Jin, Hou Qing, Pan Rong-Jian, Wu Lu, Fu Bao-Qin. Molecular dynamics study of special quasirandom structure of Zr-Nb alloys. Acta Physica Sinica, 2021, 70(3): 033103. doi: 10.7498/aps.70.20201407
    [4] Li Wen, Ma Xiao-Jing, Xu Jin-Liang, Wang Yan, Lei Jun-Peng. Effects of base angle and wettability of nanostructures on droplet wetting behaviors. Acta Physica Sinica, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [5] Wang Yan, Xu Jin-Liang, Li Wen, Liu Huan. Molecular dynamics study on structural characteristics of Lennard-Jones supercritical fluids. Acta Physica Sinica, 2020, 69(7): 070201. doi: 10.7498/aps.69.20191591
    [6] Li Rui, Liu Teng, Chen Xiang, Chen Si-Cong, Fu Yi-Hong, Liu Lin. Influence of interface structure on nanoindentation behavior of Cu/Ni multilayer film: Atomic scale simulation. Acta Physica Sinica, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [7] Zhang Zhong-Qiang, Li Chong, Liu Han-Lun, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure. Acta Physica Sinica, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [8] Yuan Wei, Peng Hai-Bo, Du Xin, Lü Peng, Shen Yang-Hao, Zhao Yan, Chen Liang, Wang Tie-Shan. Structure evalution of electron irradiated borosilicate glass simuluated by molecular dynamics. Acta Physica Sinica, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [9] Hua Yu-Chao, Cao Bing-Yang. A model for phonon thermal conductivity of multi-constrained nanostructures. Acta Physica Sinica, 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [10] Zhang Jin-Ping, Zhang Yang-Yang, Li Hui, Gao Jing-Xia, Cheng Xin-Lu. Molecular dynamics investigation of thermite reaction behavior of nanostructured Al/SiO2 system. Acta Physica Sinica, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [11] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [12] Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [13] Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui, Zhang Fan, Luo Jun. Synthesis and characterization of Sb2Te3 nanostructures. Acta Physica Sinica, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [14] Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics study on structural change of a Au959 cluster supported on MgO(100) surface at low temperature. Acta Physica Sinica, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [15] Liu Jian-Ting, Duan Hai-Ming. Molecular dynamics simulation of structures and melting behaviours of iridium clusters with different potentials. Acta Physica Sinica, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [16] Li Ai-Hua, Zhang Kai-Wang, Meng Li-Jun, Li Jun, Liu Wen-Liang, Zhong Jian-Xin. Novel silicon nanostructures based on graphene ribbons. Acta Physica Sinica, 2008, 57(7): 4356-4363. doi: 10.7498/aps.57.4356
    [17] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [18] Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the structure changes in a high-angle Cu grain boundary by heating and quenching. Acta Physica Sinica, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [19] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  400
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2025
  • Accepted Date:  22 April 2025
  • Available Online:  27 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回