Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and simulation of X-ray lens with large diameter conical glass tube

HUA Lu ZHOU Zexian ZHONG Yuchuan ZHANG Jinfu YUAN Tianyu SHI Lulin WANG Zhao CHEN Yupeng WANG Guodong CHEN Yanhong JIN Xuejian LEI Yu WU Xiaoxia WANG Yuyu SUN Tianxi CHENG Rui YANG Jie

Citation:

Design and simulation of X-ray lens with large diameter conical glass tube

HUA Lu, ZHOU Zexian, ZHONG Yuchuan, ZHANG Jinfu, YUAN Tianyu, SHI Lulin, WANG Zhao, CHEN Yupeng, WANG Guodong, CHEN Yanhong, JIN Xuejian, LEI Yu, WU Xiaoxia, WANG Yuyu, SUN Tianxi, CHENG Rui, YANG Jie
cstr: 32037.14.aps.74.20250369
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In high-energy density physics (HEDP) experiments, accurate diagnostics of physical parameters such as electron temperature, plasma density, and ionization state are essential for understanding matter behavior under extreme conditions. In these cases, X-ray spectroscopic technique, especially those using crystal spectrometers, is widely used to achieve high spectral resolution. However, a common challenge in such experiments lies in the inherent low brightness and poor spatial coherence of laboratory-based X-ray sources, which limit photon throughput, thus the diagnostic accuracy. Therefore, improving the X-ray optical transmission efficiency between the source and the detector is a key step to improve the performance of the whole system. Capillary X-ray optics, which function based on the principle of total internal reflection within hollow glass structures, provides a promising avenue for beam shaping, collimation, and focusing in the soft-to-hard X-ray range. These optical devices are usually divided into polycapillary type and monocapillary type. While polycapillary optics are composed of numerous micro-channels and used primarily for collimating or focusing divergent X-rays, monocapillary lenses—consisting of single curved channels—provide more precise beam control and are particularly suitable for customized X-ray pathways. Depending on the curvature of the inner reflective surface, monocapillaries are classified into conical, parabolic, and ellipsoidal geometries. In this study, we propose and analyze a novel design of a large-caliber conical glass tube, specifically tailored to address the issue of low light utilization in multi-channel focusing spectrographs with spatial resolution (FSSR). The proposed conical glass tube is made of a single large-diameter capillary structure, simplifying alignment requirements and reducing the surface manufacturing precision typically required by complex aspheric lenses. Its geometric configuration enables X-rays from extended or weak sources to be redirected and controlled to convergef, thereby improving photon collection without significantly altering beam divergence. To quantify the performance of this optical system, we develop a detailed mathematical ray-tracing model and implement it in MATLAB. The model combines physical parameters such as capillary inner diameter, taper angle, reflection loss, and source-detector geometry. Numerical simulations show that compared with traditional flat or slit based systems, the new conical design improves source utilization efficiency by 3.1 times. Furthermore, the lens exhibits a ring-shaped enhancement region in the output intensity profile, which can be regulated by adjusting the capillary geometry and source positioning. This feature enables the spatial customization of the beam profile, thereby facilitating optimized coupling with downstream spectroscopic components or imaging systems. In conclusion, the proposed large-aperture conical monocapillary X-ray lens provides a practical and efficient solution for enhancing X-ray optical transport in low-brightness source environments. Its simple construction, tunable focusing characteristics, and compatibility with diverse X-ray source types make it a compelling candidate for integration into a high-resolution X-ray diagnostic system, particularly in HEDP and laboratory-scale X-ray spectroscopy. This work not only introduces a novel optical approach but also provides a robust theoretical and simulation framework for guiding future experimental design and application of capillary-based X-ray optics.
      Corresponding author: SUN Tianxi, stx@bnu.edu.cn ; CHENG Rui, chengrui@impcas.ac.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2022YFA1602500), the Shenzhen Science and Technology Program, China (Grant No. KJZD20230923114219040), and the National Natural Science Foundation of China (Grant Nos. 12120101005, U2430208).
    [1]

    Reverdin C, Thais F, Loisel G, Bougeard M 2010 Rev. Sci. Instrum. 81 10E327Google Scholar

    [2]

    Varentsov D, Ternovoi V Y, Kulish M, Fernengel D, Fertman A, Hug A, Menzel J, Ni P, Nikolaev D N, Shilkin N, Turtikov V, Udrea S, Fortov V E, Golubev A A, Gryaznov V K, Hoffmann D H H, Kim V, Lomonosov I V, Mintsev V, Sharkov By, Shutov A, Spiller P, Tahir N A, Wahl H 2007 Nucl. Instrum. Methods Phys. Res. , Sect. A 577 262Google Scholar

    [3]

    Ryazantsev S N, Skobelev I Y, Filippov E D, Martynenko A S, Mishchenko M D, Krůs M, Renner O, Pikuz S A 2021 Matter Radiat. Extremes 6 014402Google Scholar

    [4]

    Glenzer S H, Landen O L, Neumayer P, Lee R W, Widmann K, Pollaine S W, Wallace R J, Gregori G, Höll A, Bornath T, Thiele R, Schwarz V, Kraeft W D, Redmer R 2007 Phys. Rev. Lett. 98 065002Google Scholar

    [5]

    Regan S P, Falk K, Gregori G, Radha P B, Hu S X, Boehly T R, Crowley B J B, Glenzer S H, Landen O L, Gericke D O, Döppner T, Meyerhofer D D, Murphy C D, Sangster T C, Vorberger J 2012 Phys. Rev. Lett. 109 265003Google Scholar

    [6]

    Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, Burian T, Chalupský J, Falcone R W, Graves C, Hájková V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P A, Nagler B, Wark J S 2012 Nature 482 59Google Scholar

    [7]

    Yi S Z, Du H Y, Si H X, Zhou Z X, Jiang L, Wang Z S, Cheng R 2023 Nucl. Instrum. Methods Phys. Res. , Sect. A 1057 168722Google Scholar

    [8]

    Yi Q, Meng S J, Ye F, Lu J, Yan X S, Yang R H, Jiang S Q, Ning J M, Zhou L, Chen F X, Yang J L, Xu Z P, Li Z H 2023 AIP Adv. 13 035216Google Scholar

    [9]

    Renner O, Šmíd M, Batani D, Antonelli L 2016 Plasma Phys. Controlled Fusion 58 75007Google Scholar

    [10]

    Eftekhari-Zadeh E, Loetzsch R, Manganelli L, Blümcke M S, Tauschwitz A, Uschmann I, Pukhov A, Rosmej O, Spielmann C, Kartashov D 2023 Phys. Scr. 98 115615Google Scholar

    [11]

    Hurricane O A, Herrmann M C 2017 Annu. Rev. Nucl. Part. Sci. 67 213Google Scholar

    [12]

    Zhao Y, Yang J M, Zhang J Y, Liu J S, Yuan X, Jin F T 2009 Rev. Sci. Instrum. 80 043505Google Scholar

    [13]

    Kumakhov M A, Komarov F F 1990 Phys. Rep. 191 289Google Scholar

    [14]

    Balaic D X, Nugent K A, Barnea Z, Garrett R, Wilkins W 1995 J. Synchrotron Radiat. 2 296Google Scholar

    [15]

    Yokomae S, Motoyama H, Mimura H 2018 Precis. Eng. 53 248Google Scholar

    [16]

    MacDonald C A 2010 X-Ray Opt. Instrum. 2010 867049

    [17]

    Gibson W M, Kumakhov M 1993 Proc. SPIE. 172

    [18]

    Bilderback D H, Hoffman S A, Thiel D J 1994 Science 263 201Google Scholar

    [19]

    Sowa K M, Jany B R, Korecki P 2018 Optica 5 577Google Scholar

    [20]

    Korecki P, Sowa K M, Jany B R, Krok F 2016 Phys. Rev. Lett. 116 233902Google Scholar

    [21]

    Szwedowski-Rammert V, Baumann J, Schlesiger C, Waldschläger U, Gross A, Kanngießer B, Mantouvalou I 2019 J. Anal. At. Spectrom. 34 922Google Scholar

    [22]

    Matsuyama T, Tanaka Y, Taniguchi N, Oh J S, Tsuji K 2024 J. Anal. At. Spectrom. 39 76Google Scholar

    [23]

    Matsuyama T, Tanaka Y, Mori Y, Tsuji K 2023 Talanta 265 124808Google Scholar

    [24]

    Peng S, Liu Z G, Sun T X, Ma Y Z, Ding X L 2014 Anal. Chem. 86 362Google Scholar

    [25]

    Fittschen U E A, Falkenberg G 2011 Spectrochim. Acta, Part B 66 567Google Scholar

    [26]

    Wallen S L, Pfund D M, Fulton J L, Yonker C R, Newville M, Ma Y 1996 Rev. Sci. Instrum. 67 2843Google Scholar

    [27]

    Alexandre B J, Gomes M G, Real S 2015 Mater. Struct. 48 2869Google Scholar

    [28]

    Lin X Y, Li Y D, Sun T X, Pan Q L 2010 Chin. Phys. B 19 070205

    [29]

    Liu A D, Lin Y Z 2004 Math. Comput. Simul. 66 577Google Scholar

    [30]

    Peng S Q, Liu Z G, Sun T X, Wang K, Yi L T, Yang K, Chen M, Wang J B 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 795 186Google Scholar

    [31]

    Sun T X, Ding X L 2015 Rev. Anal. Chem. 34 45

    [32]

    Stern E A, Kalman Z, Lewis A, Lieberman K 1988 Appl. Opt. 27 5135Google Scholar

    [33]

    Wen H, Zhou M, Wu Y M, Yuan T Y, Liu Z G 2022 Appl. Opt. 61 3656Google Scholar

    [34]

    Motoyama H, Sato T, Iwasaki A, Takei Y, Kume T, Egawa S, Hiraguri K, Hashizume H, Yamanouchi K, Mimura H 2016 Rev. Sci. Instrum. 87 051803Google Scholar

    [35]

    Koch R J, Jozwiak C, Bostwick A, Stripe B, Cordier M, Hussain Z, Yun W, Rotenberg E 2018 J. Synchrotron Radiat. 31 50Google Scholar

    [36]

    邵尚坤, 袁天语, 李惠泉, 孙学鹏, 华陆, 刘志国, 孙天希 2022 北京师范大学学报(自然科学版) 58 681

    Shao S K, Yuan T Y, Li H Q, Sun X P, Hua L, Liu Z G, Sun T X 2022 J. Beijing Norm. Univ. (Nat. Sci.) 58 681

    [37]

    Jiang B W, Liu Z G, Sun X P, Sun T X, Deng B, Li F Z, Yi L T, Yuan M N, Zhu Y, Zhang F S, Xiao T Q, Wang J, Tai R Z 2017 Opt. Commun. 398 91Google Scholar

    [38]

    Balaic D X, Barnea Z, Nugent K A, Garrett R F, Varghese J N, Wilkins S W 1996 J. Synchrotron Radiat. 3 289Google Scholar

    [39]

    Wang Y B, Li Y L, Shao S K, Zhang X Y, Li Y F, Sun X P, Tao F, Deng B, Sun T X 2020 Opt. Commun. 464 125544Google Scholar

    [40]

    Wang X Y, Li Y D, Luo H, Ye L, Zhou M, Duan J Y, Lin X Y 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 947 162762Google Scholar

    [41]

    Sun X P, Zhang X Y, Zhu Y, Wang Y B, Shang H Z, Zhang F S, Liu Z G, Sun T X 2018 Nucl. Instrum. Methods Phys. Res. , Sect. A 888 13Google Scholar

    [42]

    Zhou Z X, Cheng R, Du H Y, Yi S Z, Fu F, Wang G D, Shi L L, Wang Z, Jin X J, Chen Y H, Zhang Y S, Chen L W, Yang J, Su M G 2024 J. Anal. At. Spectrom. 39 31

    [43]

    孙天希 2022 光学学报 42 1134002Google Scholar

    Sun T X 2022 Acta Opt. Sin. 42 1134002Google Scholar

    [44]

    Shao S K, Li H Q, Yuan T Y, Zhang X Y, Hua L, Sun X P, Liu Z G, Sun T X 2022 Front. Phys. 10 816981Google Scholar

    [45]

    Zymierska D 1996 Acta. Phys. Pol. A 89 347Google Scholar

  • 图 1  锥型玻璃管使用对比图 (a)锥管逆向使用的光路图; (b)锥管正向使用的光路图

    Figure 1.  Comparison of conical glass tube usage: (a) Light path with reverse use of the tube; (b) light path with forward use of the tube.

    图 2  LCGTXL的光路传输图

    Figure 2.  Light path transmission diagram of LCGTXL.

    图 3  LCGTXL的数学模型设计图

    Figure 3.  Mathematical model design of LCGTXL.

    图 4  LCGTXL的光路模拟示意图

    Figure 4.  Schematic of the optical path simulation for LCGTXL.

    图 5  LCGTXL X射线传输的可视化 (a) X射线传输的整体剖面图; (b)直通光的部分传输图; (c)反射光的部分传输图; (d)—(f)在图(a)中红色虚线的三维强度分布图; (g)—(i)在图(a)中红色虚线的二维分布; (j)—(l)分别沿着图(g)—(i)中的红色虚线的强度分布

    Figure 5.  Visualization of X-ray transmission in LCGTXL: (a) Overall profile of X-ray transmission; (b) partial transmission diagram of straight light; (c) partial transmission diagram of reflected light; (d)–(f) three-dimensional intensity distribution of the red dotted line in Figure (a); (g)–(i) two-dimensional distribution of the red dotted line in Figure (a); (j)–(l) intensity distribution along red dotted lines in Figure(g)–(i), respectively.

    图 6  焦斑处功率密度对比图

    Figure 6.  Contrast diagram of power density at focal spot.

    图 7  未镀膜处理的焦斑形状对比

    Figure 7.  Comparison of the shape of focal spot without coated.

    图 8  光线传输示意图

    Figure 8.  Schematic diagram of ray transmission.

    图 9  斜率$ a $ 和出口半径$ {R}_{{\mathrm{o}}} $随入口半径$ {R}_{{\mathrm{i}}} $的变化关系

    Figure 9.  Relationship between slope $ a $ and outlet radius $ {R}_{{\mathrm{o}}} $ with inlet radius $ {R}_{{\mathrm{i}}} $.

    图 10  LCGTXL传输性能与入口半径的关系

    Figure 10.  Relationship between LCGTXL transmission performance and inlet radius.

    图 11  LCGTXL传输性能与斜率误差的关系

    Figure 11.  Relationship between LCGTXL transmission performance and slope error.

    图 12  LCGTXL传输性能与表面粗糙度的关系 (a)光源利用率和总平均增益随表面粗糙度的变化关系; (b)表面粗糙度对反射率的影响

    Figure 12.  Relationship between LCGTXL transmission performance and surface roughness: (a) Variation of source utilization and total average gain with surface roughness; (b) effect of surface roughness on reflectivity.

    图 13  LCGTXL传输性能与光源尺寸的关系 (a)光源尺寸对光源利用率和总平均增益的影响; (b) 光源尺寸对反射率的影响

    Figure 13.  Relationship between LCGTXL transmission performance and source size: (a) Effect of source size on source utilization and total average gain; (b) effect of source size on reflectivity.

    表 1  LCGTXL中的几何仿真参数

    Table 1.  Geometric simulation parameters in LCGTXL.

    参数$ {f}_{1} $$ L $$ {f}_{2} $$ {R}_{{\mathrm{i}}} $$ {R}_{{\mathrm{o}}} $$ {R}_{{\mathrm{f}}} $
    单位/mm21002980.86.8825
    DownLoad: CSV

    表 2  不同条件下的传输性能

    Table 2.  Transmission performance under different conditions.

    种类X射线能量/keV光源利用率增益
    不加透镜1.501.0001.000
    玻璃管1.501.5881.599
    镀铱玻璃管1.503.1553.118
    DownLoad: CSV
  • [1]

    Reverdin C, Thais F, Loisel G, Bougeard M 2010 Rev. Sci. Instrum. 81 10E327Google Scholar

    [2]

    Varentsov D, Ternovoi V Y, Kulish M, Fernengel D, Fertman A, Hug A, Menzel J, Ni P, Nikolaev D N, Shilkin N, Turtikov V, Udrea S, Fortov V E, Golubev A A, Gryaznov V K, Hoffmann D H H, Kim V, Lomonosov I V, Mintsev V, Sharkov By, Shutov A, Spiller P, Tahir N A, Wahl H 2007 Nucl. Instrum. Methods Phys. Res. , Sect. A 577 262Google Scholar

    [3]

    Ryazantsev S N, Skobelev I Y, Filippov E D, Martynenko A S, Mishchenko M D, Krůs M, Renner O, Pikuz S A 2021 Matter Radiat. Extremes 6 014402Google Scholar

    [4]

    Glenzer S H, Landen O L, Neumayer P, Lee R W, Widmann K, Pollaine S W, Wallace R J, Gregori G, Höll A, Bornath T, Thiele R, Schwarz V, Kraeft W D, Redmer R 2007 Phys. Rev. Lett. 98 065002Google Scholar

    [5]

    Regan S P, Falk K, Gregori G, Radha P B, Hu S X, Boehly T R, Crowley B J B, Glenzer S H, Landen O L, Gericke D O, Döppner T, Meyerhofer D D, Murphy C D, Sangster T C, Vorberger J 2012 Phys. Rev. Lett. 109 265003Google Scholar

    [6]

    Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, Burian T, Chalupský J, Falcone R W, Graves C, Hájková V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P A, Nagler B, Wark J S 2012 Nature 482 59Google Scholar

    [7]

    Yi S Z, Du H Y, Si H X, Zhou Z X, Jiang L, Wang Z S, Cheng R 2023 Nucl. Instrum. Methods Phys. Res. , Sect. A 1057 168722Google Scholar

    [8]

    Yi Q, Meng S J, Ye F, Lu J, Yan X S, Yang R H, Jiang S Q, Ning J M, Zhou L, Chen F X, Yang J L, Xu Z P, Li Z H 2023 AIP Adv. 13 035216Google Scholar

    [9]

    Renner O, Šmíd M, Batani D, Antonelli L 2016 Plasma Phys. Controlled Fusion 58 75007Google Scholar

    [10]

    Eftekhari-Zadeh E, Loetzsch R, Manganelli L, Blümcke M S, Tauschwitz A, Uschmann I, Pukhov A, Rosmej O, Spielmann C, Kartashov D 2023 Phys. Scr. 98 115615Google Scholar

    [11]

    Hurricane O A, Herrmann M C 2017 Annu. Rev. Nucl. Part. Sci. 67 213Google Scholar

    [12]

    Zhao Y, Yang J M, Zhang J Y, Liu J S, Yuan X, Jin F T 2009 Rev. Sci. Instrum. 80 043505Google Scholar

    [13]

    Kumakhov M A, Komarov F F 1990 Phys. Rep. 191 289Google Scholar

    [14]

    Balaic D X, Nugent K A, Barnea Z, Garrett R, Wilkins W 1995 J. Synchrotron Radiat. 2 296Google Scholar

    [15]

    Yokomae S, Motoyama H, Mimura H 2018 Precis. Eng. 53 248Google Scholar

    [16]

    MacDonald C A 2010 X-Ray Opt. Instrum. 2010 867049

    [17]

    Gibson W M, Kumakhov M 1993 Proc. SPIE. 172

    [18]

    Bilderback D H, Hoffman S A, Thiel D J 1994 Science 263 201Google Scholar

    [19]

    Sowa K M, Jany B R, Korecki P 2018 Optica 5 577Google Scholar

    [20]

    Korecki P, Sowa K M, Jany B R, Krok F 2016 Phys. Rev. Lett. 116 233902Google Scholar

    [21]

    Szwedowski-Rammert V, Baumann J, Schlesiger C, Waldschläger U, Gross A, Kanngießer B, Mantouvalou I 2019 J. Anal. At. Spectrom. 34 922Google Scholar

    [22]

    Matsuyama T, Tanaka Y, Taniguchi N, Oh J S, Tsuji K 2024 J. Anal. At. Spectrom. 39 76Google Scholar

    [23]

    Matsuyama T, Tanaka Y, Mori Y, Tsuji K 2023 Talanta 265 124808Google Scholar

    [24]

    Peng S, Liu Z G, Sun T X, Ma Y Z, Ding X L 2014 Anal. Chem. 86 362Google Scholar

    [25]

    Fittschen U E A, Falkenberg G 2011 Spectrochim. Acta, Part B 66 567Google Scholar

    [26]

    Wallen S L, Pfund D M, Fulton J L, Yonker C R, Newville M, Ma Y 1996 Rev. Sci. Instrum. 67 2843Google Scholar

    [27]

    Alexandre B J, Gomes M G, Real S 2015 Mater. Struct. 48 2869Google Scholar

    [28]

    Lin X Y, Li Y D, Sun T X, Pan Q L 2010 Chin. Phys. B 19 070205

    [29]

    Liu A D, Lin Y Z 2004 Math. Comput. Simul. 66 577Google Scholar

    [30]

    Peng S Q, Liu Z G, Sun T X, Wang K, Yi L T, Yang K, Chen M, Wang J B 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 795 186Google Scholar

    [31]

    Sun T X, Ding X L 2015 Rev. Anal. Chem. 34 45

    [32]

    Stern E A, Kalman Z, Lewis A, Lieberman K 1988 Appl. Opt. 27 5135Google Scholar

    [33]

    Wen H, Zhou M, Wu Y M, Yuan T Y, Liu Z G 2022 Appl. Opt. 61 3656Google Scholar

    [34]

    Motoyama H, Sato T, Iwasaki A, Takei Y, Kume T, Egawa S, Hiraguri K, Hashizume H, Yamanouchi K, Mimura H 2016 Rev. Sci. Instrum. 87 051803Google Scholar

    [35]

    Koch R J, Jozwiak C, Bostwick A, Stripe B, Cordier M, Hussain Z, Yun W, Rotenberg E 2018 J. Synchrotron Radiat. 31 50Google Scholar

    [36]

    邵尚坤, 袁天语, 李惠泉, 孙学鹏, 华陆, 刘志国, 孙天希 2022 北京师范大学学报(自然科学版) 58 681

    Shao S K, Yuan T Y, Li H Q, Sun X P, Hua L, Liu Z G, Sun T X 2022 J. Beijing Norm. Univ. (Nat. Sci.) 58 681

    [37]

    Jiang B W, Liu Z G, Sun X P, Sun T X, Deng B, Li F Z, Yi L T, Yuan M N, Zhu Y, Zhang F S, Xiao T Q, Wang J, Tai R Z 2017 Opt. Commun. 398 91Google Scholar

    [38]

    Balaic D X, Barnea Z, Nugent K A, Garrett R F, Varghese J N, Wilkins S W 1996 J. Synchrotron Radiat. 3 289Google Scholar

    [39]

    Wang Y B, Li Y L, Shao S K, Zhang X Y, Li Y F, Sun X P, Tao F, Deng B, Sun T X 2020 Opt. Commun. 464 125544Google Scholar

    [40]

    Wang X Y, Li Y D, Luo H, Ye L, Zhou M, Duan J Y, Lin X Y 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 947 162762Google Scholar

    [41]

    Sun X P, Zhang X Y, Zhu Y, Wang Y B, Shang H Z, Zhang F S, Liu Z G, Sun T X 2018 Nucl. Instrum. Methods Phys. Res. , Sect. A 888 13Google Scholar

    [42]

    Zhou Z X, Cheng R, Du H Y, Yi S Z, Fu F, Wang G D, Shi L L, Wang Z, Jin X J, Chen Y H, Zhang Y S, Chen L W, Yang J, Su M G 2024 J. Anal. At. Spectrom. 39 31

    [43]

    孙天希 2022 光学学报 42 1134002Google Scholar

    Sun T X 2022 Acta Opt. Sin. 42 1134002Google Scholar

    [44]

    Shao S K, Li H Q, Yuan T Y, Zhang X Y, Hua L, Sun X P, Liu Z G, Sun T X 2022 Front. Phys. 10 816981Google Scholar

    [45]

    Zymierska D 1996 Acta. Phys. Pol. A 89 347Google Scholar

  • [1] Yuan Tian-Yu, Shao Shang-Kun, Sun Xue-Peng, Li Hui-Quan, Hua Lu, Sun Tian-Xi. Design of a single glass tube optical lens for soft X-ray laser decoherence. Acta Physica Sinica, 2023, 72(3): 034203. doi: 10.7498/aps.72.20221917
    [2] Zhou La-Zhen, Xia Wen-Jing, Xu Qian-Qian, Chen Zan, Li Fang-Zuo, Liu Zhi-Guo, Sun Tian-Xi. Micro cone-beam CT scanner based on X-ray polycapillary optics. Acta Physica Sinica, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [3] Sun Wei, An Wei-Ming, Zhong Jia-Yong. Two-dimensional numerical study of effect of magnetic field on laser-driven Kelvin-Helmholtz instability. Acta Physica Sinica, 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [4] Jiang Qi-Li, Duan Ze-Ming, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin. A new type of micro-X-ray diffractometer focused by polycapillary optics. Acta Physica Sinica, 2019, 68(24): 240701. doi: 10.7498/aps.68.20190497
    [5] Chen Zhi, Xu Liang, Chen Rong-Chang, Du Guo-Hao, Deng Biao, Xie Hong-Lan, Xiao Ti-Qiao. Focusing performance of hard X-ray single Kinoform lens. Acta Physica Sinica, 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [6] Chen Can, Tong Ya-Jun, Xie Hong-Lan, Xiao Ti-Qiao. Study of the focusing properties of Laue bent crystal by ray-tracing. Acta Physica Sinica, 2012, 61(10): 104102. doi: 10.7498/aps.61.104102
    [7] Wu Rong, Hua Neng, Zhang Xiao-Bo, Cao Guo-Wei, Zhao Dong-Feng, Zhou Shen-Lei. Large-diameter multi-level diffractive optical elements with high energy efficiency. Acta Physica Sinica, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [8] Yan Ji, Zheng Jian-Hua, Chen Li, Lin Zhi-Wei, Jiang Shao-En. The application of phase contrast imaging to implosion capsule diagnose in high energy density physics environment. Acta Physica Sinica, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [9] Gu Yu-Qiu, Ma Zhan-Nan, Zheng Wu-Di, Wang Xiao-Fang, Wu Yu-Chi, Zhu Bin, Dong Ke-Gong, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Zhang Bao-Han, Jiao Chun-Ye, Wen Xian-Lun, Zang Hua-Ping, Yu Jin-Qing, Wei Lai. Density measurement and MHD simulation ofgas-filled capillary discharge waveguide. Acta Physica Sinica, 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [10] Su Zhao-Feng, Yang Hai-Liang, Qiu Ai-Ci, Sun Jian-Feng, Cong Pei-Tian, Wang Liang-Ping, Lei Tian-Shi, Han Juan-Juan. Measurements of energy spectra for high energy pulsed X-ray. Acta Physica Sinica, 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [11] Wang Lei-Ran, Liu Xue-Ming, Gong Yong-Kang. Experimental research on high-energy dissipative solitons in an erbium-doped fiber laser. Acta Physica Sinica, 2010, 59(9): 6200-6204. doi: 10.7498/aps.59.6200
    [12] Zhu Yan-Qing, Liang Jing-Qiu, Liang Zhong-Zhu, Huang Xin-Hua, Le Zi-Chun, Yi Fu-Ting, Hou Feng-Jie, Huang Wan-Xia, Dong Wen, Wang Wei-Biao, Wang Zhi-Li, Cui Nai-Di. Hourglass-shaped X-ray compound refractive lens made by back-mask exposure technology. Acta Physica Sinica, 2009, 58(3): 1526-1530. doi: 10.7498/aps.58.1526
    [13] Lei Ting, Tu Cheng-Hou, Li En-Bang, Li Yong-Nan, Guo Wen-Gang, Wei Dai, Zhu Hui, Lü Fu-Yun. The theoretical study and numerical simulation of self-similar transmission of high energy wave-breaking free ultra-short pulse. Acta Physica Sinica, 2007, 56(5): 2769-2775. doi: 10.7498/aps.56.2769
    [14] Chen Bao-Zhen, Huang Zu-Qia. Efficiency of the third-order harmonic in gas-filled capillary driven by fs laser pulses. Acta Physica Sinica, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [15] Wu Peng-Ju, Li Yu-De, Lin Xiao-Yan, Liu An-Dong, Sun Tian-Xi. Simulation of x-ray transmission through a capillary. Acta Physica Sinica, 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
    [16] Zhao Yong-Peng, Cheng Yuan-Li, Wang Qi, Hayashi Yasushi, Hotta Eiki. The lasing time of soft x-ray laser pumped by capillary discharge. Acta Physica Sinica, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [17] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [18] LIU ZHEN-WEI, YANG XIAO-LIANG, XIAO SI-GUO. THE EXPERIMENTAL STUDY OF IMPROVING RARE-EARTHDOPED MATERIALS'S ENERGY UP-CONVERSIONEFFICIENCY. Acta Physica Sinica, 2001, 50(9): 1795-1779. doi: 10.7498/aps.50.1795
    [19] JIANG SHAO-EN, ZHENG ZHI-JIAN, CHENG JIN-XIU, SUN KE-XU, YANG JIA-MIN, WANG HONG -BIN. EXPERIMENTAL MEASUEMENTS OF X-RAY ENERGY TRANSPORT ALONG CYLINDRAL CAVITY AXIS. Acta Physica Sinica, 2000, 49(7): 1303-1306. doi: 10.7498/aps.49.1303
    [20] CHEN BAO-ZHEN. THEORETICAL INVESTIGATION OF X-RAY TRANSMISSION THROUGH A CYLINDER CAPILLARY. Acta Physica Sinica, 2000, 49(10): 1933-1937. doi: 10.7498/aps.49.1933
Metrics
  • Abstract views:  362
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  21 March 2025
  • Accepted Date:  25 April 2025
  • Available Online:  10 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回