Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Excitation energies and radiative transition rates of isoelectronic sequences of Li-like ions with Z = 6–51

ZHAO Jiaxun WU Chensheng SONG Qinghe

Citation:

Excitation energies and radiative transition rates of isoelectronic sequences of Li-like ions with Z = 6–51

ZHAO Jiaxun, WU Chensheng, SONG Qinghe
cstr: 32037.14.aps.74.20250611
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Li-like ions widely exist in astrophysical and laboratory plasmas, and their precise atomic parameters (e.g. excitation energies and transition rates) are very important for plasma diagnostics and spectral analysis. In this work, we employ the GRASP2018 software package, which is widely used in atomic structure calculations, to systematically compute the lowest 15 energy levels and the electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition rates between them of 17 Li-like ions across the isoelectronic sequence (Z = 6–51: C3+, F6+, Mg9+, P12+, Ar15+, Sc18+, Cr21+, Co24+, Zn27+, As30+, Kr33+, Y36+, Mo39+, Rh42+, Cd45+, Sn37+, Sb38+). The calculations are based on the multi-configuration Dirac-Fock (MCDF) and configuration interaction (CI) method combined with high-order relativistic corrections and quantum electrodynamics effects such as Breit interaction, self-energy correction and vacuum polarization. The computational convergence is achieved. The calculated excitation energies and transition rates are compared with the NIST database and previous theoretical results. Due to the reasonable construction and larger scale of baseset, the current computational results show evident improvement compared with the results obtained using the same MCDF+CI method previously. Particularly for the two lowest excited states, [1s22p]1/2 and [1s22p]3/2, which exhibit slower convergence, the relative difference between current results and the NIST data is reduced by one to two orders of magnitude compared with previous MCDF+CI calculations. This accuracy even approaches that achieved by S-matrix methods specifically optimized for the ground state and these two lowest excited states. For transition rates, except for certain weak transitions with rates below $ {10}^{3}\;{{{\mathrm{s}}}}^{{-1}} $, the difference between our calculations and previous theoretical results obtained using the MCDF+CI method is still within 1%. Furthermore, our calculations accord with the NIST data within 5% for the majority of transitions. A comparison of NIST data with other previous theoretical results shows evident discrepancies between our calculations and the NIST data for some excitation energies and transition rates. Our results are consistent with other theoretical results for these specific values, indicating that these particular energy levels and transitions need more detailed theoretical and experimental investigation. This work provides highly accurate data for supporting experimental diagnostics and theoretical modeling of astrophysical and laboratory plasmas in future research. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00154.
      Corresponding author: WU Chensheng, 20220209@kust.edu.cn ; SONG Qinghe, songqinghe@kust.edu.cn
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant No. 12204057), the Applied Basic Research Program of Yunnan Province, China (Grant No. 202401CF070090), and the National Key Laboratory of Computational Physics.
    [1]

    Hu Z M, Xiong G, He Z C, Yang Z H, Numadate N, Huang C W, Yang J M, Yao K, Wei B R, Zou Y M, Wu C S, Ma Y L, Wu Y, Gao X, Nakamura N 2022 Phys. Rev. A 105 L030801Google Scholar

    [2]

    Wu C S, Xie L Y, Hu Z M, Gao X 2020 J. Quant. Spectrosc. Ra. 246 106912Google Scholar

    [3]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37 2764Google Scholar

    [4]

    Doschek G A, Feldman U 2010 J. Phys. B: At. Mol. Opt. Phys. 43 232001Google Scholar

    [5]

    Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F, Nishimura H, Li Y, Dong Q, Wang S, Zhang Y, Rhee Y, Lee Y, Han J, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nat. Phys. 5 821Google Scholar

    [6]

    Del Zanna G, Mason H E 2018 Living Rev. Sol. Phys. 15 5Google Scholar

    [7]

    Griem H R 1986 Principles of Plasma Spectroscopy (Dordrecht: Springer Netherlands) pp885–910

    [8]

    Foot C J 2005 Atomic physics (New York: Oxford University Press

    [9]

    Aggarwal K M, Keenan F P, Heeter R F 2010 Phys. Scripta 81 015303Google Scholar

    [10]

    Aggarwal K M, Keenan F P 2012 Atom. Data Nucl. Data 98 1003Google Scholar

    [11]

    Aggarwal K M, Keenan F P 2013 Atom. Data Nucl. Data 99 156Google Scholar

    [12]

    Khatri I, Goyal A, Aggarwal S, Singh A K, Mohan M 2016 Radiat. Phys. Chem. 123 46Google Scholar

    [13]

    刘尚宗, 颉录有, 丁晓彬, 董晨钟 2012 物理学报 61 093106Google Scholar

    Liu S Z, Xie L Y, Ding X B, Dong C Z 2012 Acta Phys. Sin. 61 093106Google Scholar

    [14]

    胡木宏, 刘博文, 徐恩慧, 马玉龙, 吴勇 2020 原子与分子物理学报 37 819Google Scholar

    Hu M H, Liu B W, Xu E H, Ma Y L, Wu Y 2020 J. Atomic Mol. Phys. 37 819Google Scholar

    [15]

    Gu M F 2005 Atom. Data Nucl. Data 89 267Google Scholar

    [16]

    Sapirstein J, Cheng K T 2011 Phys. Rev. A 83 012504Google Scholar

    [17]

    Yerokhin V A, Surzhykov A, Müller A 2017 Phys. Rev. A 96 042505Google Scholar

    [18]

    Ge Z M, Wang Z W, Zhou Y J, He L M, Liu G G 2003 Chin. Phys. B 12 488Google Scholar

    [19]

    Wang Z W, Zhu X W, Chung K T 1992 J. Phys. B: At. Mol. Opt. Phys. 25 3915Google Scholar

    [20]

    Hu M H, Wang Z W, Zeng F, Wang T, Wang J 2011 Chin. Phys. B 20 083101Google Scholar

    [21]

    Wang Z W, Zhu X W, Chung K T 1992 Phys. Rev. A 46 6914Google Scholar

    [22]

    Wang Z W, Zhu X W, Chung K T 1993 Phys. Scripta 47 65Google Scholar

    [23]

    Wang L M, Liu T T, Yang W Q, Yan Z C 2023 Chin. Phys. B 32 033102Google Scholar

    [24]

    Cai J, Yu W W, Zhang N 2014 Chin. Phys. Lett. 31 093101Google Scholar

    [25]

    Nahar S N 2002 Astron. Astrophys. 389 716Google Scholar

    [26]

    NIST Atomic Spectra Database (ver. 5.12), Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2024) https:// physics.nist.gov/asd [2025-4-11]

    [27]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Comput. Phys. Commun. 55 425Google Scholar

    [28]

    Froese Fischer C, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [29]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer-Verlag

    [30]

    刘博文 2021 硕士学位论文 (大连: 辽宁师范大学)

    Liu B W 2021 M. S. Thesis (Dalian: Liaoning Normal University

    [31]

    Martin G A, Wiese W L 1976 J. Phys. Chem. Ref. Data 5 537Google Scholar

  • 图 1  Mg9+, Cr21+, Mo39+三种离子两个激发态[1s22p]1/2和[1s24f]5/2的激发能随着基组扩大的收敛情况

    Figure 1.  Convergence of the excitation energy for two excited states [1s22p]1/2 and [1s24f]5/2 of Mg9+, Cr21+ and Mo39+ ions with basis set expansion.

    图 2  Mg9+, Cr21+, Mo39+三种离子能级间E1, M1, E2跃迁的跃迁速率与相对不确定度之间的关系

    Figure 2.  Relationship between the calculated transition rates (E1, M1, E2) and the relative uncertainties of the results for level transitions in the Mg9+, Cr21+ and Mo39+ ions.

    表 1  准完备基组的构建

    Table 1.  Construction of the quasi-complete basis.

    要优化的轨道a) 参考组态选取b) 优化的能级c)
    基组(n ≤ 2) 1s2s2p [1s22s, 1s22p] [1s22s]1/2, [1s22p]1/2, 3/2
    基组(n ≤ 3) 3s3p3d [1s22s, 1s22p, 1s23s, 1s23p, 1s23d] [1s22s]1/2, [1s22p]1/2, 3/2,
    [1s23s]1/2, [1s23p]1/2, 3/2,
    [1s23d]3/2, 5/2
    基组(n ≤ 4) 4s4p4d4f [1s22s, 1s22p, 1s23s, 1s23p, 1s23d,
    1s24s, 1s24p, 1s24d, 1s24f]
    [1s22s]1/2, [1s22p]1/2, 3/2,
    [1s23s]1/2, [1s23p]1/2, 3/2,
    [1s23d]3/2, 5/2, [1s24s]1/2,
    [1s24p]1/2, 3/2, [1s24d]3/2, 5/2,
    [1s24f]5/2, 7/2
    基组(n ≤ 5) 5s5p5d5f5g [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s,
    1s24p, 1s24d, 1s24f→5s5p5d5f5g]S, D
    同上
    基组(n ≤ 6) 6s6p6d6f6g6h [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s, 1s24p,
    1s24d, 1s24f→6s6p6d6f6g6 h]S, D
    同上
    基组(n ≤ 7) 7s7p7d7f7g7h7i [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s, 1s24p,
    1s24d, 1s24f→7s7p7d7f7g7h7i]S, D
    同上
    基组(n ≤ 8) 8s8p8d8f8g8h8i8k [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s, 1s24p,
    1s24d, 1s24f→8s8p8d8f8g8 h8i8k]S, D
    同上
    基组(n ≤ 9) 9s9p9d9f9g9h9i9k [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s, 1s24p,
    1s24d, 1s24f→9s9p9d9f9g9 h9i9k]S, D
    同上
    注: a)n = 1, 2, 3, 4的轨道为光谱轨道, $ n\geqslant 5 $的轨道为赝轨道; b)1s22s, 1s22p等为非相对论参考组态, “S”, “D”分别表示单、双重激发产生组态; c)MCSCF计算时优化的能级.
    DownLoad: CSV

    表 2  Mg9+激发能(单位: eV)计算结果及其与NIST[26]和其他理论计算结果[11, 15, 16]的比较

    Table 2.  Excitation energy (in eV) data for Mg9+ and its comparison with NIST[26] and other theoretical computational results[11,15,16].

    编号 能级 当前计算 NIST a) 其他理论结果 与NIST的相对差异/%
    MCDF b) MBPT c) S-Matrix d) 当前计算 MCDF MBPT S-Matrix
    1 [1s22s]1/2 0 0 0
    2 [1s22p]1/2 19.8405 19.83922 19.9758 19.8297 19.8382 0.007 0.688 –0.048 –0.005
    3 [1s22p]3/2 20.3343 20.33202 20.4655 20.3242 20.3315 0.011 0.656 –0.038 –0.003
    4 [1s23s]1/2 208.6336 208.628 208.5291 0.003 –0.047
    5 [1s23p]1/2 214.0728 214.061 214.0012 0.006 –0.028
    6 [1s23p]3/2 214.2184 214.224 214.1457 –0.003 –0.037
    7 [1s23d]3/2 216.1664 216.17 216.0475 –0.002 –0.057
    8 [1s23d]5/2 216.2115 216.215 216.0921 –0.002 –0.057
    9 [1s24s]1/2 279.2771 279.29 279.1520 –0.005 –0.049
    10 [1s24p]1/2 281.5067 281.463 281.3948 0.016 –0.024
    11 [1s24p]3/2 281.5680 281.463 281.4556 0.037 –0.003
    12 [1s24d]3/2 282.3775 282.359 282.2479 0.007 –0.039
    13 [1s24d]5/2 282.3965 282.40 282.2667 –0.001 –0.047
    14 [1s24f]5/2 282.4407 282.443 282.3021 –0.001 –0.050
    15 [1s24f]7/2 282.4510 282.453 282.3114 –0.001 –0.050
    注: a) NIST[26]数据库收录数据; b)文献[11]使用MCDF+CI方法的计算结果; c)文献[15]使用MBPT方法的计算结果; d)文献[16]使用S矩阵方法的计算结果.
    DownLoad: CSV

    表 4  Mo39+激发能(单位eV)计算结果及其与NIST[26]和其他理论计算结果[12,15,16]的比较

    Table 4.  Excitation energy (in eV) data for Mo39+ and its comparison with NIST[26] and other theoretical computational results[12,15,16].

    编号 能级 当前计算 NIST a) 其他理论结果 与NIST的相对差异/%
    MCDF b) MBPT c) S-Matrix d) 当前计算 MCDF MBPT S-Matrix
    1 [1s22s]1/2 0 0
    2 [1s22p]1/2 86.1124 86.108 86.2085 86.1764 86.1041 0.005 0.117 0.079 –0.005
    3 [1s22p]3/2 212.0023 211.9956 212.1476 212.1689 211.982 0.003 0.072 0.082 –0.006
    4 [1s23s]1/2 3206.9762 3207.1 3206.7966 –0.004 –0.009
    5 [1s23p]1/2 3230.8215 3230.8 3230.8328 0.001 0.001
    6 [1s23p]3/2 3268.1729 3268.1 3268.1355 0.002 0.001
    7 [1s23d]3/2 3276.6290 3276.5 3276.5429 0.004 0.001
    8 [1s23d]5/2 3288.2659 3288.1 3288.1599 0.005 0.002
    9 [1s24s]1/2 4314.1977 4313.9 0.007
    10 [1s24p]1/2 4323.9937 4323.8 0.004
    11 [1s24p]3/2 4339.7142 4339.5 0.005
    12 [1s24d]3/2 4343.2364 4343.1 0.003
    13 [1s24d]5/2 4348.1528 4348.0 0.004
    14 [1s24f]5/2 4348.3516
    15 [1s24f]7/2 4350.7885
    注: a) NIST[26]数据库收录数据; b)文献[12]使用MCDF+CI方法的计算结果; c)文献[15]使用MBPT方法的计算结果; d)文献[16]使用S矩阵方法的计算结果.
    DownLoad: CSV

    表 3  Cr21+激发能(单位: eV)计算结果及其与NIST[26]和其他理论计算结果[10,15,16]的比较

    Table 3.  Excitation energy (in eV) data for Cr21+ and its comparison with NIST[26] and other theoretical computational results[10,15,16].

    编号 能级 当前计算 NIST a) 其他理论结果 与NIST的相对差异/%
    MCDF b) MBPT c) S-Matrix d) 当前计算 MCDF MBPT S-Matrix
    1 [1s22s]1/2 0 0 0
    2 [1s22p]1/2 44.3259 44.3322 44.4933 44.3417 44.3209 –0.014 0.363 0.021 –0.025
    3 [1s22p]3/2 55.6001 55.5958 55.7466 55.6222 55.5918 0.008 0.271 0.047 –0.007
    4 [1s23s]1/2 967.4110 967.40 967.2840 0.001 –0.012
    5 [1s23p]1/2 979.7019 979.68 979.6261 0.002 –0.005
    6 [1s23p]3/2 983.0371 983.02 982.9546 0.002 –0.007
    7 [1s23d]3/2 987.7139 987.70 987.5784 0.001 –0.012
    8 [1s23d]5/2 988.7666 988.75 988.6288 0.002 –0.012
    9 [1s24s]1/2 1300.2631 1300.12 1300.1223 0.011 0.000
    10 [1s24p]1/2 1305.3243 1305.28 1305.2034 0.003 –0.006
    11 [1s24p]3/2 1306.7288 1306.69 1306.6053 0.003 –0.006
    12 [1s24d]3/2 1308.6689 1308.66 1308.5255 0.001 –0.010
    13 [1s24d]5/2 1309.1131 1309.10 1308.9686 0.001 –0.010
    14 [1s24f]5/2 1309.2268 1309.0709
    15 [1s24f]7/2 1309.4480 1309.2923
    注: a) NIST[26]数据库收录数据; b)文献[10]使用MCDF+CI方法的计算结果; c)文献[15]使用MBPT方法的计算结果; d)文献[16]使用S矩阵方法的计算结果.
    DownLoad: CSV

    表 5  Mg9+跃迁速率(单位: s–1)计算结果及其与NIST[26]数据及其他理论计算结果[11]的比较

    Table 5.  Comparison of transition rates (in s–1) calculations for Mg9+ with NIST[26] data and other Ref. [11].

    跃迁编号 上能级编号 下能级编号 跃迁类型 当前计算 NIST a) 其他理论结果b) 与NIST的相对差异/%
    当前计算 其他理论结果
    1 2 1 E1 6.982×108 6.95×108 7.176×108 0.45 3.25
    2 5 1 E1 2.149×1011 2.17×1011 2.136×1011 –0.96 –1.55
    3 10 1 E1 9.744×1010 9.93×1010 9.700×1010 –1.88 –2.31
    4 5 4 E1 8.870×107 8.85×107 9.023×107 0.23 1.95
    5 10 4 E1 2.678×1010 2.69×1010 2.672×1010 –0.44 –0.67
    6 10 9 E1 2.060×107 1.91×107 2.090×107 7.84 9.40
    7 3 1 E1 7.530×108 7.51×108 7.736×108 0.27 3.01
    8 6 1 E1 2.135×1011 2.16×1011 2.122×1011 –1.18 –1.76
    9 11 1 E1 9.693×1010 9.88×1010 9.651×1010 –1.89 –2.31
    10 6 4 E1 9.616×107 9.67×107 9.771×107 –0.56 1.04
    11 11 4 E1 2.656×1010 2.68×1010 2.651×1010 –0.89 –1.10
    12 11 9 E1 2.238×107 1.91×107 2.267×107 17.17 18.66
    13 4 2 E1 3.456×1010 3.39×1010 3.428×1010 1.96 1.12
    14 9 2 E1 1.353×1010 1.34×1010 1.340×1010 0.95 0.00
    15 9 5 E1 9.319×109 9.47×109 9.324×109 –1.60 –1.54
    16 7 2 E1 5.569×1011 5.48×1011 5.580×1011 1.62 1.83
    17 12 2 E1 1.826×1011 1.85×1011 1.835×1011 –1.28 –0.79
    18 7 5 E1 3.315×106 3.38×106 3.096×106 –1.92 –8.42
    19 12 5 E1 5.791×1010 5.83×1010 5.795×1010 –0.66 –0.60
    20 12 10 E1 1.018×106 1.11×106 9.542×105 –8.28 –14.04
    21 10 7 E1 4.340×109 4.26×109 4.323×109 1.88 1.48
    22 11 7 E1 4.278×108 4.26×108 4.262×108 0.41 0.04
    23 14 7 E1 1.289×1011 1.290×1011
    24 14 12 E1 2.635×102 1.704×102
    25 4 3 E1 6.967×1010 6.81×1010 6.909×1010 2.31 1.45
    26 9 3 E1 2.724×1010 2.67×1010 2.694×1010 2.02 0.90
    27 9 6 E1 1.878×1010 1.88×1010 1.878×1010 –0.12 –0.11
    28 7 3 E1 1.111×1011 1.09×1011 1.113×1011 1.94 2.11
    29 12 3 E1 3.637×1010 3.66×1010 3.654×1010 –0.64 –0.16
    30 7 6 E1 5.339×105 5.31×105 4.968×105 0.54 –6.44
    31 12 6 E1 1.160×1010 1.16×1010 1.160×1010 –0.04 0.00
    32 12 11 E1 1.634×105 2.21×105 1.528×105 –26.04 –30.86
    33 8 3 E1 6.666×1011 6.55×1011 6.680×1011 1.77 1.98
    34 13 3 E1 2.183×1011 2.21×1011 2.194×1011 –1.20 –0.71
    35 8 6 E1 3.432×106 3.43×106 3.198×106 0.05 –6.77
    36 13 6 E1 6.950×1010 6.96×1010 6.955×1010 –0.14 –0.08
    37 13 11 E1 1.052×106 1.51×106 9.843×105 –30.36 –34.81
    38 11 8 E1 3.865×109 3.82×109 3.851×109 1.18 0.81
    39 14 8 E1 9.201×109 9.202×109
    40 14 13 E1 6.379 3.394
    41 15 8 E1 1.380×1011 1.381×1011
    42 15 13 E1 1.786×102 1.035×102
    43 7 1 E2 7.367×107 7.356×107
    44 12 1 E2 1.208×107 1.208×107
    45 7 4 E2 36.65 36.27
    46 12 4 E2 4.721×106 4.718×106
    47 12 9 E2 6.189 6.128
    48 8 1 E2 7.372×107 7.361×107
    49 13 1 E2 1.212×107 1.212×107
    50 8 4 E2 37.81 37.40
    51 13 4 E2 4.722×106 4.720×106
    52 13 9 E2 6.386 6.321
    53 3 2 E2 1.824×10–6 1.755×10–6
    54 6 2 E2 1.263×107 1.261×107
    55 11 2 E2 5.390×106 5.420×106
    56 6 5 E2 1.544×10–7 1.468×10–7
    57 11 5 E2 1.329×106 1.328×106
    58 11 10 E2 2.373×10–8 2.187×10–8
    59 14 2 E2 4.816×107 4.180×107
    60 14 5 E2 5.013×106 4.997×106
    61 14 10 E2 7.343×10–3 6.368×10–3
    62 9 7 E2 4.852×105 4.852×105
    63 12 7 E2 8.342×105 8.342×105
    64 8 7 E2 6.385×10–11 6.073×10–11
    65 13 7 E2 2.383×105 2.383×105
    66 13 12 E2 1.368×10–11 1.291×10–11
    67 5 3 E2 2.521×107 2.517×107
    68 10 3 E2 1.071×107 1.076×107
    69 10 6 E2 2.655×106 2.654×106
    70 6 3 E2 1.259×107 1.257×107
    71 11 3 E2 5.359×106 5.384×106
    72 11 6 E2 1.326×106 1.326×106
    73 14 3 E2 1.376×107 1.374×107
    74 14 6 E2 1.422×106 1.418×106
    75 14 11 E2 1.491×10–3 1.286×10–3
    76 15 3 E2 6.186×107 6.180×107
    77 15 6 E2 6.405×106 6.384×106
    78 15 11 E2 7.114×10–3 6.118×10–3
    79 9 8 E2 7.277×105 7.278×105
    80 12 8 E2 3.572×105 3.572×105
    81 13 8 E2 9.526×105 9.526×105
    82 15 14 E2 1.519×10–13 1.057×10–13
    83 4 1 M1 31.71 29.21
    84 9 1 M1 26.58 24.18
    85 9 4 M1 2.899×10–1 2.728×10–1
    86 7 1 M1 1.639 1.625
    87 12 1 M1 9.801×10–1 9.693×10–1
    88 7 4 M1 6.509×10–6 6.565×10–6
    89 12 4 M1 5.915×10–3 5.842×10–3
    90 12 9 M1 2.665×10–7 2.683×10–7
    91 5 2 M1 6.256 5.847
    92 10 2 M1 4.903 4.585
    93 10 5 M1 7.465×10–2 7.429×10–2
    94 3 2 M1 5.674×10–1 5.534×10–1
    95 6 2 M1 41.41 39.89
    96 11 2 M1 21.22 20.35
    97 6 5 M1 1.456×10–2 1.421×10–2
    98 11 5 M1 2.307 2.258
    99 11 10 M1 1.084×10–3 1.060×10–3
    100 9 7 M1 7.338×10–5 8.191×10–5
    101 12 7 M1 1.849×10–1 1.841×10–1
    102 8 7 M1 5.203×10–4 5.012×10–4
    103 13 7 M1 1.458×10–1 1.410×10–1
    104 13 12 M1 3.887×10–5 3.748×10–5
    105 5 3 M1 1.550×102 1.543×102
    106 10 3 M1 90.07 89.89
    107 10 6 M1 6.361 6.287
    108 6 3 M1 42.40 43.34
    109 11 3 M1 33.34 34.06
    110 11 6 M1 5.226×10–1 5.291×10–1
    111 14 3 M1 4.582×10–1 4.541×10–1
    112 14 6 M1 1.620×10–2 1.619×10–2
    113 14 11 M1 1.431×10–9 1.290×10–9
    114 12 8 M1 5.510×10–1 5.408×10–1
    115 13 8 M1 6.109×10–1 6.116×10–1
    116 15 14 M1 6.636×10–6 5.095×10–6
    注: a) NIST[26]数据库收录数据; b)文献[11]使用MCDF+CI方法的计算结果.
    DownLoad: CSV

    表 6  Cr21+跃迁速率(单位: s–1)计算结果及其与NIST[26]数据及其他理论计算结果[10]的比较

    Table 6.  Comparison of transition rates (in s–1) calculations for Cr21+ with NIST[26] data and other Ref. [10].

    跃迁编号 上能级编号 下能级编号 跃迁类型 当前计算 NIST a) 其他理论结果b) 与NIST的相对差异/%
    当前计算 其他理论结果
    1 2 1 E1 1.642×109 1.65×109 1.660×109 –0.51 0.61
    2 5 1 E1 5.277×1012 5.28×1012 5.260×1012 –0.06 –0.38
    3 10 1 E1 2.325×1012 2.5×1012 2.319×1012 –7.00 –7.24
    4 5 4 E1 2.142×108 2.160×108
    5 10 4 E1 6.891×1011 7.100×1011 6.880×1011 –2.95 –3.10
    6 10 9 E1 5.015×107 5.060×107
    7 3 1 E1 3.270×109 3.29×109 3.300×109 –0.62 0.30
    8 6 1 E1 5.129×1012 5.13×1012 5.110×1012 –0.02 –0.39
    9 11 1 E1 2.279×1012 2.5×1012 2.270×1012 –8.83 –9.20
    10 6 4 E1 4.428×108 4.450×108
    11 11 4 E1 6.661×1011 7.100×1011 6.650×1011 –6.18 –6.34
    12 11 9 E1 1.054×108 1.060×108
    13 4 2 E1 6.456×1011 6. ×1011 6.427×1011 7.60 7.12
    14 9 2 E1 2.585×1011 2.576×1011
    15 9 5 E1 1.800×1011 1.801×1011
    16 7 2 E1 1.296×1013 1.29×1013 1.300×1013 0.50 0.78
    17 12 2 E1 4.220×1012 4.1×1012 4.230×1012 2.93 3.17
    18 7 5 E1 3.793×107 3.730×107
    19 12 5 E1 1.366×1012 1.4×1012 1.370×1012 –2.43 –2.14
    20 12 10 E1 1.183×107 1.160×107
    21 10 7 E1 9.770×1010 9.759×1010
    22 11 7 E1 9.101×109 9.090×109
    23 14 7 E1 3.027×1012 3.030×1012
    24 14 12 E1 3.741×104 3.590×104
    25 4 3 E1 1.350×1012 1.3×1012 1.344×1012 3.88 3.38
    26 9 3 E1 5.386×1011 5.353×1011
    27 9 6 E1 3.754×1011 3.754×1011
    28 7 3 E1 2.562×1012 2.6×1012 2.320×1012 –1.48 –10.77
    29 12 3 E1 8.256×1011 7.9×1011 8.030×1011 4.51 1.65
    30 7 6 E1 1.502×106 1.461×106
    31 12 6 E1 2.745×1011 2.7×1011 2.745×1011 1.65 1.67
    32 12 11 E1 4.591×105 4.466×105
    33 8 3 E1 1.537×1013 1.54×1013 1.540×1013 –0.19 0.00
    34 13 3 E1 4.974×1012 4.9×1012 4.990×1012 1.52 1.84
    35 8 6 E1 1.662×107 1.630×107
    36 13 6 E1 1.639×1012 1.7×1012 1.640×1012 –3.58 –3.53
    37 13 11 E1 5.139×106 5.010×106
    38 11 8 E1 8.356×1010 8.349×1010
    39 14 8 E1 2.152×1011 2.152×1011
    40 14 13 E1 19.64 16.90
    41 15 8 E1 3.231×1012 3.230×1012
    42 15 13 E1 8.590×103 8.040×103
    43 7 1 E2 7.117×109 7.113×109
    44 12 1 E2 9.610×108 9.618×108
    45 7 4 E2 2.242×102 2.224×102
    46 12 4 E2 4.891×108 4.890×108
    47 12 9 E2 39.00 38.65
    48 8 1 E2 7.144×109 7.140×109
    49 13 1 E2 9.797×108 9.806×108
    50 8 4 E2 2.902×102 2.879×102
    51 13 4 E2 4.900×108 4.899×108
    52 13 9 E2 50.64 50.17
    53 3 2 E2 4.938×10–1 4.917×10–1
    54 6 2 E2 1.408×109 1.408×109
    55 11 2 E2 6.093×108 6.122×108
    56 6 5 E2 4.167×10–2 4.114×10–2
    57 11 5 E2 1.493×108 1.493×108
    58 11 10 E2 6.296×10–3 6.130×10–3
    59 14 2 E2 5.450×109 5.446×109
    60 14 5 E2 5.589×108 5.585×108
    61 14 10 E2 3.995×10–1 3.805×10–1
    62 9 7 E2 5.199×107 5.199×107
    63 12 7 E2 9.476×107 9.476×107
    64 8 7 E2 1.884×10–5 1.872×10–5
    65 13 7 E2 2.707×107 2.707×107
    66 13 12 E2 4.064×10–6 4.010×10–6
    67 5 3 E2 2.795×109 2.794×109
    68 10 3 E2 1.183×109 1.186×109
    69 10 6 E2 2.974×108 2.973×108
    70 6 3 E2 1.390×109 1.390×109
    71 11 3 E2 5.952×108 5.965×108
    72 11 6 E2 1.480×108 1.480×108
    73 14 3 E2 1.555×109 1.554×109
    74 14 6 E2 1.545×108 1.544×108
    75 14 11 E2 1.221×10–2 1.142×10–2
    76 15 3 E2 6.974×109 6.972×109
    77 15 6 E2 6.973×108 6.968×108
    78 15 11 E2 8.422×10–2 7.921×10–2
    79 9 8 E2 7.807×107 7.806×107
    80 12 8 E2 4.045×107 4.045×107
    81 13 8 E2 1.079×108 1.078×108
    82 15 14 E2 3.185×10–8 3.199×10–8
    83 4 1 M1 6.556×104 6.418×104
    84 9 1 M1 5.548×104 5.416×104
    85 9 4 M1 6.576×102 6.488×102
    86 7 1 M1 3.608×103 3.594×103
    87 12 1 M1 2.117×103 2.106×103
    88 7 4 M1 2.540×10–3 2.558×10–3
    89 12 4 M1 15.42 15.34
    90 12 9 M1 1.094×10–4 1.099×10–4
    91 5 2 M1 1.541×104 1.484×104
    92 10 2 M1 1.210×104 1.164×104
    93 10 5 M1 1.910×102 1.877×102
    94 3 2 M1 6.737×103 6.76×103 6.699×103 –0.33 –0.90
    95 6 2 M1 1.044×105 1.029×105
    96 11 2 M1 5.354×104 5.263×104
    97 6 5 M1 1.747×102 1.737×102
    98 11 5 M1 5.859×103 5.820×103
    99 11 10 M1 13.06 12.98
    100 9 7 M1 1.938×10–1 2.052×10–1
    101 12 7 M1 4.925×102 4.915×102
    102 8 7 M1 6.596 6.552
    103 13 7 M1 3.830×102 3.821×102
    104 13 12 M1 4.957×10–1 4.921×10–1
    105 5 3 M1 3.847×105 3.855×105
    106 10 3 M1 2.239×105 2.248×105
    107 10 6 M1 1.598×104 1.595×104
    108 6 3 M1 1.033×105 1.045×105
    109 11 3 M1 8.104×104 8.197×104
    110 11 6 M1 1.318×103 1.325×103
    111 14 3 M1 1.198×103 1.193×103
    112 14 6 M1 41.17 41.19
    113 14 11 M1 7.411×10–7 7.092×10–7
    114 12 8 M1 1.449×103 1.449×103
    115 13 8 M1 1.620×103 1.622×103
    116 15 14 M1 6.561×10–2 6.579×10–2
    注: a) NIST[26]数据库收录数据; b)文献[10]使用MCDF+CI方法的计算结果.
    DownLoad: CSV

    表 7  Mo39+跃迁速率(单位: s–1)计算结果及其与其他理论结果[12]的比较

    Table 7.  Comparison of transition rates (in s–1) calculations for Mo39+ with other Ref. [12].

    跃迁编号 上能级编号 下能级编号 跃迁类型 当前计算 NIST a) 其他理论结果b) 与NIST的相对差异
    当前计算 其他理论结果
    1 2 1 E1 3.549×109 3.54×109
    2 5 1 E1 6.057×1013 6.06×1013
    3 10 1 E1 2.625×1013
    4 5 4 E1 4.656×108
    5 10 4 E1 8.009×1012
    6 10 9 E1 1.085×108
    7 3 1 E1 5.448×1010 5.48×1010
    8 6 1 E1 5.520×1013 5.52×1013
    9 11 1 E1 2.466×1013
    10 6 4 E1 7.999×109
    11 11 4 E1 7.165×1012
    12 11 9 E1 1.949×109
    13 4 2 E1 6.644×1012 6.64×1012
    14 9 2 E1 2.681×1012
    15 9 5 E1 1.867×1012
    16 7 2 E1 1.442×1014 1.44×1014
    17 12 2 E1 4.742×1013
    18 7 5 E1 2.118×109
    19 12 5 E1 1.493×1013
    20 12 10 E1 6.753×108
    21 10 7 E1 1.211×1012
    22 11 7 E1 9.602×1010
    23 14 7 E1 3.331×1013
    24 14 12 E1 8.822×106
    25 4 3 E1 1.547×1013 1.55×1013
    26 9 3 E1 6.168×1012
    27 9 6 E1 4.307×1012
    28 7 3 E1 2.770×1013
    29 12 3 E1 8.805×1012
    30 7 6 E1 2.566×106
    31 12 6 E1 3.034×1012
    32 12 11 E1 8.156×105
    33 8 3 E1 1.663×1014 1.66×1014
    34 13 3 E1 5.364×1013
    35 8 6 E1 2.143×108
    36 13 6 E1 1.794×1013
    37 13 11 E1 6.846×107
    38 11 8 E1 9.245×1011
    39 14 8 E1 2.344×1012
    40 14 13 E1 22.52
    41 15 8 E1 3.528×1013
    42 15 13 E1 1.295×106
    43 7 1 E2 2.551×1011
    44 12 1 E2 3.348×1010
    45 7 4 E2 9.550×103
    46 12 4 E2 1.786×1010
    47 12 9 E2 1.729×103
    48 8 1 E2 2.584×1011
    49 13 1 E2 3.573×1010
    50 8 4 E2 2.102×104
    51 13 4 E2 1.797×1010
    52 13 9 E2 3.821×103
    53 3 2 E2 7.513×103
    54 6 2 E2 5.155×1010
    55 11 2 E2 2.269×1010
    56 6 5 E2 6.462×102
    57 11 5 E2 5.488×109
    58 11 10 E2 97.35
    59 14 2 E2 1.960×1011
    60 14 5 E2 2.172×1010
    61 14 10 E2 3.443×102
    62 9 7 E2 1.898×109
    63 12 7 E2 3.444×109
    64 8 7 E2 2.786×10–1
    65 13 7 E2 9.830×108
    66 13 12 E2 6.059×10–2
    67 5 3 E2 1.003×1011
    68 10 3 E2 4.105×1010
    69 10 6 E2 1.083×1010
    70 6 3 E2 4.946×1010
    71 11 3 E2 2.108×1010
    72 11 6 E2 5.347×109
    73 14 3 E2 5.576×1010
    74 14 6 E2 5.558×109
    75 14 11 E2 5.488×10–1
    76 15 3 E2 2.483×1011
    77 15 6 E2 2.528×1010
    78 15 11 E2 8.617
    79 9 8 E2 2.856×109
    80 12 8 E2 1.457×109
    81 13 8 E2 3.883×109
    82 15 14 E2 4.660×10–4
    83 4 1 M1 2.594×107
    84 9 1 M1 2.189×107
    85 9 4 M1 2.650×105
    86 7 1 M1 1.438×106
    87 12 1 M1 8.373×105
    88 7 4 M1 1.138
    89 12 4 M1 6.242×103
    90 12 9 M1 5.005×10–2
    91 5 2 M1 6.440×106
    92 10 2 M1 5.038×106
    93 10 5 M1 8.012×104
    94 3 2 M1 9.297×106
    95 6 2 M1 4.442×107
    96 11 2 M1 2.269×107
    97 6 5 M1 2.443×105
    98 11 5 M1 2.493×106
    99 11 10 M1 1.825×104
    100 9 7 M1 80.40
    101 12 7 M1 1.985×105
    102 8 7 M1 8.877×103
    103 13 7 M1 1.564×105
    104 13 12 M1 6.709×102
    105 5 3 M1 1.540×108
    106 10 3 M1 8.971×107
    107 10 6 M1 6.495×106
    108 6 3 M1 3.961×107
    109 11 3 M1 3.100×107
    110 11 6 M1 5.186×105
    111 14 3 M1 4.714×105
    112 14 6 M1 1.633×104
    113 14 11 M1 3.355×10–4
    114 12 8 M1 5.801×105
    115 13 8 M1 6.412×105
    116 15 14 M1 87.54
    注: a) NIST[26]数据库当前对该元素跃迁速率数据无收录; b)文献[12]使用MCDF+CI方法的计算结果.
    DownLoad: CSV
  • [1]

    Hu Z M, Xiong G, He Z C, Yang Z H, Numadate N, Huang C W, Yang J M, Yao K, Wei B R, Zou Y M, Wu C S, Ma Y L, Wu Y, Gao X, Nakamura N 2022 Phys. Rev. A 105 L030801Google Scholar

    [2]

    Wu C S, Xie L Y, Hu Z M, Gao X 2020 J. Quant. Spectrosc. Ra. 246 106912Google Scholar

    [3]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37 2764Google Scholar

    [4]

    Doschek G A, Feldman U 2010 J. Phys. B: At. Mol. Opt. Phys. 43 232001Google Scholar

    [5]

    Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F, Nishimura H, Li Y, Dong Q, Wang S, Zhang Y, Rhee Y, Lee Y, Han J, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nat. Phys. 5 821Google Scholar

    [6]

    Del Zanna G, Mason H E 2018 Living Rev. Sol. Phys. 15 5Google Scholar

    [7]

    Griem H R 1986 Principles of Plasma Spectroscopy (Dordrecht: Springer Netherlands) pp885–910

    [8]

    Foot C J 2005 Atomic physics (New York: Oxford University Press

    [9]

    Aggarwal K M, Keenan F P, Heeter R F 2010 Phys. Scripta 81 015303Google Scholar

    [10]

    Aggarwal K M, Keenan F P 2012 Atom. Data Nucl. Data 98 1003Google Scholar

    [11]

    Aggarwal K M, Keenan F P 2013 Atom. Data Nucl. Data 99 156Google Scholar

    [12]

    Khatri I, Goyal A, Aggarwal S, Singh A K, Mohan M 2016 Radiat. Phys. Chem. 123 46Google Scholar

    [13]

    刘尚宗, 颉录有, 丁晓彬, 董晨钟 2012 物理学报 61 093106Google Scholar

    Liu S Z, Xie L Y, Ding X B, Dong C Z 2012 Acta Phys. Sin. 61 093106Google Scholar

    [14]

    胡木宏, 刘博文, 徐恩慧, 马玉龙, 吴勇 2020 原子与分子物理学报 37 819Google Scholar

    Hu M H, Liu B W, Xu E H, Ma Y L, Wu Y 2020 J. Atomic Mol. Phys. 37 819Google Scholar

    [15]

    Gu M F 2005 Atom. Data Nucl. Data 89 267Google Scholar

    [16]

    Sapirstein J, Cheng K T 2011 Phys. Rev. A 83 012504Google Scholar

    [17]

    Yerokhin V A, Surzhykov A, Müller A 2017 Phys. Rev. A 96 042505Google Scholar

    [18]

    Ge Z M, Wang Z W, Zhou Y J, He L M, Liu G G 2003 Chin. Phys. B 12 488Google Scholar

    [19]

    Wang Z W, Zhu X W, Chung K T 1992 J. Phys. B: At. Mol. Opt. Phys. 25 3915Google Scholar

    [20]

    Hu M H, Wang Z W, Zeng F, Wang T, Wang J 2011 Chin. Phys. B 20 083101Google Scholar

    [21]

    Wang Z W, Zhu X W, Chung K T 1992 Phys. Rev. A 46 6914Google Scholar

    [22]

    Wang Z W, Zhu X W, Chung K T 1993 Phys. Scripta 47 65Google Scholar

    [23]

    Wang L M, Liu T T, Yang W Q, Yan Z C 2023 Chin. Phys. B 32 033102Google Scholar

    [24]

    Cai J, Yu W W, Zhang N 2014 Chin. Phys. Lett. 31 093101Google Scholar

    [25]

    Nahar S N 2002 Astron. Astrophys. 389 716Google Scholar

    [26]

    NIST Atomic Spectra Database (ver. 5.12), Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2024) https:// physics.nist.gov/asd [2025-4-11]

    [27]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Comput. Phys. Commun. 55 425Google Scholar

    [28]

    Froese Fischer C, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [29]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer-Verlag

    [30]

    刘博文 2021 硕士学位论文 (大连: 辽宁师范大学)

    Liu B W 2021 M. S. Thesis (Dalian: Liaoning Normal University

    [31]

    Martin G A, Wiese W L 1976 J. Phys. Chem. Ref. Data 5 537Google Scholar

  • [1] Wei Xiang-Jie, Sun Deng, Wang Li-Ming, Yan Zong-Chao. High precision calculations of Fermi contact term for lithium-like ions. Acta Physica Sinica, 2022, 71(20): 203101. doi: 10.7498/aps.71.20220923
    [2] Wen Da-Dong, Deng Yong-He, Dai Xiong-Ying, Wu An-Ru, Tian Ze-An. Atomic-level mechanism for isothermal crystallization in supercooled liquid tantalum. Acta Physica Sinica, 2020, 69(19): 196101. doi: 10.7498/aps.69.20200665
    [3] Liu Qi, Guan Peng-Fei. First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses. Acta Physica Sinica, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [4] Wang Jin-Xia, Shi Ying-Long, Zhang Deng-Hong, Xie Lu-You, Dong Chen-Zhong. Theoretical study on angular distribution and polarization characteristics of X-ray emission following dielectronic recombination of lithium-like ions. Acta Physica Sinica, 2013, 62(23): 233401. doi: 10.7498/aps.62.233401
    [5] Liu Shang-Zong, Xie Lu-You, Ding Xiao-Bin, Dong Chen-Zhong. The effect of relativity on the structures and transition properties of Li-like ions. Acta Physica Sinica, 2012, 61(9): 093106. doi: 10.7498/aps.61.093106
    [6] Lu Shuo, Zhang Yue, Shang Jia-Xiang. First principles study on structure and property of Si2 CN4(010) surface. Acta Physica Sinica, 2011, 60(2): 027302. doi: 10.7498/aps.60.027302
    [7] Guo Gu-Qing, Yang Liang, Zhang Guo-Qing. Atomic structure of Zr48Cu45Al7 bulk metallic glass. Acta Physica Sinica, 2011, 60(1): 016103. doi: 10.7498/aps.60.016103
    [8] Sang Cui-Cui, Wang Yong-Jun, Wan Jian-Jie, Ding Xiao-Bin, Dong Chen-Zhong. Theoretical study of radiative recombination and the sub-sequent radiative decay processes in highly charged Au ions. Acta Physica Sinica, 2010, 59(6): 3871-3877. doi: 10.7498/aps.59.3871
    [9] Liu Fu, Zhou Ji-Cheng, Tan Xiao-Chao. First-principles study on 3C-SiC(001)-(2×1)surface atomic structure and electronic structure. Acta Physica Sinica, 2009, 58(11): 7821-7825. doi: 10.7498/aps.58.7821
    [10] Wang Xiang-Li, Dong Chen-Zhong, Sang Cui-Cui. Theoretical study on Ne 1s photoionization and corresponding Auger decay processes. Acta Physica Sinica, 2009, 58(8): 5297-5303. doi: 10.7498/aps.58.5297
    [11] Shi Ying-Long, Dong Chen-Zhong. Theoretical investigation on level structure of 1s inner-shell excited state and the related decay property of C Ⅱ ion. Acta Physica Sinica, 2009, 58(4): 2350-2357. doi: 10.7498/aps.58.2350
    [12] Sang Cui-Cui, Wan Jian-Jie, Dong Chen-Zhong, Ding Xiao-Bin, Jiang Jun. Relaxation effect in photoionization processes of lithium. Acta Physica Sinica, 2008, 57(4): 2152-2160. doi: 10.7498/aps.57.2152
    [13] Shen Xiao-Zhi, Yuan Ping, Li Ji-Guang, Dong Chen-Zhong, Xie Lu-You, Shi Ying-Long. Theoretical research on radiative transition probabilities of 2p4f—2p3d for NⅡ. Acta Physica Sinica, 2007, 56(10): 5715-5722. doi: 10.7498/aps.56.5715
    [14] Chang Zhi-Wen, Wang Qing-Lin, Luo You-Hua. Effects of spin multiplicity on atomic structure of titanium trimer. Acta Physica Sinica, 2006, 55(9): 4553-4556. doi: 10.7498/aps.55.4553
    [15] Xu Peng-Shou, Li Yong-Hua, Pan Hai-Bin. First principle study on β-SiC(001)-(2×1) surface structure. Acta Physica Sinica, 2005, 54(12): 5824-5829. doi: 10.7498/aps.54.5824
    [16] Li Yong-Hua, Xu Peng-Shou, Pan Hai-Bin, Xu Fa-Qiang, Xie Chang-Kun. First-principle study on GaN(1010) surface structure. Acta Physica Sinica, 2005, 54(1): 317-322. doi: 10.7498/aps.54.317
    [17] Jiang Min-Hao, Meng Xu-Jun. A Hartree-Fock-Slater-Boltzmann-Saha method for detailed atomic structure and equation of state of plasmas. Acta Physica Sinica, 2005, 54(2): 587-593. doi: 10.7498/aps.54.587
    [18] MENG XU-JUN, ZONG XIAO-PING, BAI YUN, SUN YONG-SHENG, ZHANG JING-LIN. SELF-CONSISTENT CALCULATION OF ATOMIC STRUCTURE FOR MIXTURE. Acta Physica Sinica, 2000, 49(11): 2133-2138. doi: 10.7498/aps.49.2133
    [19] HAN LI-HONG, GOU BING-CONG, WANG FEI. RADIATIVE TRANSITION OF TRIPLY EXCITED 2p2np4So STATES TO THE ls2pmp4P STATES IN LITHIUM-LIKE IONS. Acta Physica Sinica, 2000, 49(11): 2139-2145. doi: 10.7498/aps.49.2139
    [20] WANG WAN-JUE. RELATIVISTIC MULTICONFIGURATION DIRAC-FOCK CALCULATION OF FINE-STRUCTURE ENERGY LEVELS AND TRANSITION WAVELENGTHS FOR N-LIKE KXIII, CaXIV, ScXV AND TiXVI. Acta Physica Sinica, 1992, 41(5): 726-731. doi: 10.7498/aps.41.726
  • supplement 2025年第74卷第15期153102补充材料.zip supplement
Metrics
  • Abstract views:  487
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2025
  • Accepted Date:  14 July 2025
  • Available Online:  17 July 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回