Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pressure dependence of superconducting transition temperature in bilayer nickelate La3Ni2O7: Itinerant electrons and local spin picture

LU Hongyan WANG Qianghua

Citation:

Pressure dependence of superconducting transition temperature in bilayer nickelate La3Ni2O7: Itinerant electrons and local spin picture

LU Hongyan, WANG Qianghua
cstr: 32037.14.aps.74.20250696
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Recent experimental studies on the bilayer Ruddlesden-Popper phase nickelate La3Ni2O7 have shown that in the superconducting region, its superconducting transition temperature decreases monotonically from 83 K at 18 GPa as pressure further increases, exhibiting a nearly right-triangular temperature-pressure phase diagram that is different from the dome-shaped diagrams observed in cuprates and iron-based superconductors under either doping or pressure. It is important to understand this anomalous phase diagram in elucidating the superconducting mechanism of La3Ni2O7. Since the electron-phonon coupling mechanism cannot account for the high superconducting transition temperatures in nickelate superconductors, in this work, the pressure dependence of the transition temperature is investigated from the perspective of the itinerant electrons picture and the local spin picture. By combining the density functional theory (DFT) and the unbiased singular-mode functional renormalization group (SM-FRG) method, it is found that the pairing symmetry is consistently an $s_\pm$-wave, driven by spin fluctuations that become progressively weakened under pressure, thereby decreasing in the superconducting transition temperature, which is in qualitative agreement with the experimental observation. On the other hand, we estimate that the pressure dependence in the local spin picture contradicts with the experimental result. Therefore, the pressure dependence of superconducting transition temperature is more consistent with the itinerant electrons picture. Admittedly, we only made a rough estimation based on the local spin picture. It is expected that further and more detailed research will be conducted on the pressure dependence of superconducting transition temperature from the local spin picture, providing deeper insights into the underlying superconducting mechanism of La3Ni2O7.
      Corresponding author: LU Hongyan, hylu@qfnu.edu.cn ; WANG Qianghua, qhwang@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074213, 12374147, 12274205, 92365203, 11874205, 11574108), the National Key Resaerch and Development Program of China (Grant No. 2022YFA1403201), and the National Natural Science Foundation of Shandong Province, China (Grant No. ZR2021ZD01).
    [1]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [2]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [3]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [4]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302Google Scholar

    [5]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [6]

    Zhang M X, Pei C Y, Wang Q, Zhao Y, Li C H, Cao W Z, Zhu S H, Wu J F, Qi Y P 2024 J. Mater. Sci. Technol. 185 147Google Scholar

    [7]

    Wang G, Wang N, Wang Y, Shi L, Shen X, Hou J, Ma H, Yang P, Liu Z, Zhang H, Dong X, Sun J, Wang B, Jiang K, Hu J, Uwatoko Y, Cheng J 2023 arXiv: 2311.08212[cond-mat.supr-con]

    [8]

    Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506Google Scholar

    [9]

    Zhou Y Z, Guo J, Cai S, Sun H L, Li C Y, Zhao J Y, Wang P Y, Han J Y, Chen X T, Chen Y J, Wu Q, Ding Y, Xiang T, Mao H K, Sun L L 2025 Matter Radiat. Extremes 10 027801Google Scholar

    [10]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K j, Guo E J 2024 Commun. Mater. 5 32Google Scholar

    [11]

    Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [12]

    Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 Inorg. Chem. 63 5020Google Scholar

    [13]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [14]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [15]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040Google Scholar

    [16]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [17]

    Lei Y H, Wang Y H, Song J H, Ge J X, Wu D R, Zhang Y L, Li C J 2024 Chin. Phys. B 33 096801Google Scholar

    [18]

    沈瑶 2024 物理学报 73 197104Google Scholar

    Shen Y 2024 Acta Phys. Sin. 73 197104Google Scholar

    [19]

    Huang X, Zhang H Y, Li J Y, Huo M W, Chen J F, Qiu Z Y, Ma P Y, Huang C X, Sun H L, Wang M 2024 Chin. Phys. Lett. 41 127403Google Scholar

    [20]

    Luo Z H, Hu X W, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [21]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [22]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [23]

    Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2025 Phys. Rev. B 111 174506Google Scholar

    [24]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [25]

    Wú W, Luo Z H, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402Google Scholar

    [26]

    Cao Y, Yang Y F 2024 Phys. Rev. B 109 L081105Google Scholar

    [27]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515Google Scholar

    [28]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [29]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [30]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [31]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511Google Scholar

    [32]

    Liao Z G, Chen L, Duan G J, Wang Y M, Liu C L, Yu R, Si Q M 2023 Phys. Rev. B 108 214522Google Scholar

    [33]

    Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [34]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [35]

    Jiang K, Wang Z, Zhang F C 2024 Chin. Phys. Lett. 41 017402Google Scholar

    [36]

    Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501Google Scholar

    [37]

    Tian Y H, Chen Y, Wang J M, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165154Google Scholar

    [38]

    Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504Google Scholar

    [39]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054Google Scholar

    [40]

    Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114Google Scholar

    [41]

    Qu X Z, Qu D W, Li W, Su G 2023 arXiv: 2311.12769[cond-mat.str-el]

    [42]

    Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108Google Scholar

    [43]

    Wang Y, Jiang K, Wang Z, Zhang F C, Hu J 2024 Phys. Rev. B 110 205122Google Scholar

    [44]

    Fan Z, Zhang J F, Zhan B, Lv D, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514Google Scholar

    [45]

    Luo Z H, Lv B, Wang M, Wu W, Yao D X 2024 npj Quantum Mater. 9 61Google Scholar

    [46]

    Shen Y, Qin M L, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [47]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403Google Scholar

    [48]

    Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503Google Scholar

    [49]

    Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411Google Scholar

    [50]

    Yang Y F 2025 Chin. Phys. Lett. 42 017301Google Scholar

    [51]

    Zhang F C, Rice T M 1988 Phys. Rev. B 37 3759Google Scholar

    [52]

    Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80Google Scholar

    [53]

    McMillan W L 1968 Phys. Rev. 167 331Google Scholar

    [54]

    Zhan J, Le C, Wu X, Hu J 2025 arXiv: 2503.18877 [cond-mat.supr-con]

    [55]

    Wang Y, Chen Z, Zhang Y, Jiang K, Hu J 2025 arXiv: 2501.08536 [cond-mat.str-el]

    [56]

    Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002Google Scholar

    [57]

    Jiang K Y, Cao Y H, Yang Q G, Lu H Y, Wang Q H 2025 Phys. Rev. Lett. 134 076001Google Scholar

    [58]

    Liu Y Q, Wang D, Wang Q H 2025 arXiv: 2505.07341 [cond-mat.supr-con]

    [59]

    Zhang J X, Zhang H K, You Y Z, Weng Z Y 2024 Phys. Rev. Lett. 133 126501Google Scholar

    [60]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [61]

    陈卓昱, 黄浩亮, 薛其坤 2025 物理学报 74 097401Google Scholar

    Chen Z Y, Huang H L, Xue Q K 2025 Acta Phys. Sin. 74 097401Google Scholar

    [62]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [63]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H, Zeng Q, Mao H k, Wang M 2025 Natl. Sci. Rev. nwaf220

    [64]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589Google Scholar

    [65]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17Google Scholar

    [66]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146Google Scholar

    [67]

    Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372[cond-mat.supr-con]

    [68]

    Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z H, Qian T, Lin J, He J, Sun Y J, Chen Z, Xue Q K 2025 Natl. Sci. Rev. nwaf205Google Scholar

    [69]

    Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, Yates J R 2020 J. Phys.: Condens. Matter 32 165902Google Scholar

    [70]

    Castellani C, Natoli C R, Ranninger J 1978 Phys. Rev. B 18 4945Google Scholar

    [71]

    Vaugier L, Jiang H, Biermann S 2012 Phys. Rev. B 86 165105Google Scholar

  • 图 1  La3Ni2O7从常压到104 GPa压力的超导相图[63]

    Figure 1.  The superconducting phase diagram of La3Ni2O7 single crystals under ambient pressure to 104 GPa[63].

    图 2  (a) 高压下La3Ni2O7的晶胞与原胞结构示意图; (b) 不同压力下原胞的能带结构及(c) 态密度(DOS)分布, 其中插图展示了费米能级$ E_\mathrm{F} $附近的DOS特征[57]

    Figure 2.  (a) Conventional cell and primitive cell for La3Ni2O7 under high pressure; (b) band structure and (c) DOS under different pressures for primitive cell, the insert shows the DOS near the $ E_\mathrm{F} $[57].

    图 3  (a) La3Ni2O7在14.1, 50和90 GPa压力下, U = 3 eV, $ J_{\mathrm{H}} $ = 0.4 eV时, 超导(SC)、自旋密度波(SDW)和电荷密度波(CDW)通道中$ S^{-1} $随Λ变化的FRG流方程计算结果, 左插图展示50 GPa压力下费米面上的能隙函数分布, 右插图显示同压力下SDW通道最负奇异值$ S({\boldsymbol{q}}) $的空间分布特征[57]; (b) La3Ni2O7超导转变温度$ T_{\mathrm{c}} $随压力的相图[57], $ T^{{\mathrm{onset}}}_{\mathrm{c}} $和$ {\mathrm{T}}^{{\mathrm{mid}}}_{\mathrm{c}} $引自实验数据[63]用于对比, 费米能处态密度也展示出来用于对比

    Figure 3.  (a) FRG flows of $ S^{-1} $ versus Λ in the SC, SDW, and CDW channels of La3Ni2O7, respectively, at pressures 14.1, 50, and 90 GPa with U = 3 eV, $ J_{\mathrm{H}} $ = 0.4 eV; the left subfigure present the gap function on the Fermi surfaces, the right subfigure presents the leading negative $ S({\boldsymbol{q}}) $ in the SDW channel, both subfigures are the results at pressure 50 GPa[57]; (b) phase diagram of superconducting $ T_{\mathrm{c}} $ versus pressure of La3Ni2O7[57], the $ T^{{\mathrm{onset}}}_{\mathrm{c}} $ and $ T^{{\mathrm{mid}}}_{\mathrm{c}} $ are extracted from the experimental work[63] for comparison, the DOS at the $ {E}_{\mathrm{F}}$ ($ {N}_{\mathrm{F}} $) versus pressure is also shown for comparison.

    表 1  不同压力下La3Ni2O7双层双轨道紧束缚模型的在位能$ \varepsilon_a $与跃迁积分$ t_\delta^{ab} $参数表(其中xz分别表示$ 3 {\mathrm{d}}_{x^2-y^2} $/$ 3 {\mathrm{d}}_{3 z^2-r^2} $轨道, 垂直层间距设定为1/2). 压力单位为GPa, $ \varepsilon_a $与$ t_\delta^{ab} $单位均为eV[57]

    Table 1.  On-site energies $ \varepsilon_a $ and hopping integrals $ t_\delta^{ab} $ of the bilayer two-orbital tight-binding model for La3Ni2O7 under different pressures. Here, x and z denote the $ 3 {\mathrm{d}}_{x^2-y^2} $/$ 3 {\mathrm{d}}_{3 z^2-r^2} $ orbitals, respectively. Note that the vertical interlayer distance is assigned as 1/2. The unit of pressure is GPa, and the unit of $ \varepsilon_a $ and $ t_\delta^{ab} $ are eV[57].

    Pressure $ \varepsilon_x $ $ \varepsilon_z $ $ t_{(100)}^{x x} $ $ t_{(100)}^{z z} $ $ t_{(100)}^{x z} $ $ t_{\left(00\frac{1}{2}\right)}^{x x} $ $ t_{\left(00\frac{1}{2}\right)}^{z z} $ $ t_{(110)}^{x x} $ $ t_{(110)}^{z z} $ $ t_{\left(10\frac{1}{2}\right)}^{x z} $
    14.1 0.728 0.402 –0.470 –0.118 0.235 0.008 –0.623 0.071 –0.018 –0.036
    16.1 0.737 0.407 –0.476 –0.119 0.238 0.009 –0.629 0.071 –0.018 –0.037
    19.7 0.747 0.411 –0.483 –0.121 0.242 0.009 –0.637 0.071 –0.018 –0.037
    21.3 0.749 0.412 –0.486 –0.123 0.243 0.008 –0.640 0.071 –0.018 –0.037
    25.7 0.761 0.416 –0.495 –0.125 0.247 0.009 –0.647 0.072 –0.018 –0.037
    29.8 0.769 0.417 –0.501 –0.126 0.249 0.010 –0.651 0.072 –0.018 –0.036
    40.0 0.803 0.426 –0.521 –0.134 0.259 0.009 –0.674 0.071 –0.015 –0.040
    50.0 0.833 0.437 –0.535 –0.139 0.269 0.010 –0.698 0.073 –0.016 –0.042
    60.0 0.847 0.435 –0.552 –0.145 0.273 0.011 –0.703 0.075 –0.016 –0.040
    70.0 0.871 0.447 –0.566 –0.149 0.283 0.010 –0.723 0.073 –0.017 –0.041
    80.0 0.896 0.453 –0.580 –0.153 0.287 0.009 –0.738 0.072 –0.015 –0.045
    90.0 0.918 0.461 –0.593 –0.155 0.293 0.008 –0.753 0.071 –0.016 –0.046
    DownLoad: CSV
  • [1]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [2]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [3]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [4]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302Google Scholar

    [5]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [6]

    Zhang M X, Pei C Y, Wang Q, Zhao Y, Li C H, Cao W Z, Zhu S H, Wu J F, Qi Y P 2024 J. Mater. Sci. Technol. 185 147Google Scholar

    [7]

    Wang G, Wang N, Wang Y, Shi L, Shen X, Hou J, Ma H, Yang P, Liu Z, Zhang H, Dong X, Sun J, Wang B, Jiang K, Hu J, Uwatoko Y, Cheng J 2023 arXiv: 2311.08212[cond-mat.supr-con]

    [8]

    Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506Google Scholar

    [9]

    Zhou Y Z, Guo J, Cai S, Sun H L, Li C Y, Zhao J Y, Wang P Y, Han J Y, Chen X T, Chen Y J, Wu Q, Ding Y, Xiang T, Mao H K, Sun L L 2025 Matter Radiat. Extremes 10 027801Google Scholar

    [10]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K j, Guo E J 2024 Commun. Mater. 5 32Google Scholar

    [11]

    Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [12]

    Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 Inorg. Chem. 63 5020Google Scholar

    [13]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [14]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [15]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040Google Scholar

    [16]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [17]

    Lei Y H, Wang Y H, Song J H, Ge J X, Wu D R, Zhang Y L, Li C J 2024 Chin. Phys. B 33 096801Google Scholar

    [18]

    沈瑶 2024 物理学报 73 197104Google Scholar

    Shen Y 2024 Acta Phys. Sin. 73 197104Google Scholar

    [19]

    Huang X, Zhang H Y, Li J Y, Huo M W, Chen J F, Qiu Z Y, Ma P Y, Huang C X, Sun H L, Wang M 2024 Chin. Phys. Lett. 41 127403Google Scholar

    [20]

    Luo Z H, Hu X W, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [21]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [22]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [23]

    Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2025 Phys. Rev. B 111 174506Google Scholar

    [24]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [25]

    Wú W, Luo Z H, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402Google Scholar

    [26]

    Cao Y, Yang Y F 2024 Phys. Rev. B 109 L081105Google Scholar

    [27]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515Google Scholar

    [28]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [29]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [30]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [31]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511Google Scholar

    [32]

    Liao Z G, Chen L, Duan G J, Wang Y M, Liu C L, Yu R, Si Q M 2023 Phys. Rev. B 108 214522Google Scholar

    [33]

    Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [34]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [35]

    Jiang K, Wang Z, Zhang F C 2024 Chin. Phys. Lett. 41 017402Google Scholar

    [36]

    Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501Google Scholar

    [37]

    Tian Y H, Chen Y, Wang J M, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165154Google Scholar

    [38]

    Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504Google Scholar

    [39]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054Google Scholar

    [40]

    Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114Google Scholar

    [41]

    Qu X Z, Qu D W, Li W, Su G 2023 arXiv: 2311.12769[cond-mat.str-el]

    [42]

    Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108Google Scholar

    [43]

    Wang Y, Jiang K, Wang Z, Zhang F C, Hu J 2024 Phys. Rev. B 110 205122Google Scholar

    [44]

    Fan Z, Zhang J F, Zhan B, Lv D, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514Google Scholar

    [45]

    Luo Z H, Lv B, Wang M, Wu W, Yao D X 2024 npj Quantum Mater. 9 61Google Scholar

    [46]

    Shen Y, Qin M L, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [47]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403Google Scholar

    [48]

    Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503Google Scholar

    [49]

    Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411Google Scholar

    [50]

    Yang Y F 2025 Chin. Phys. Lett. 42 017301Google Scholar

    [51]

    Zhang F C, Rice T M 1988 Phys. Rev. B 37 3759Google Scholar

    [52]

    Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80Google Scholar

    [53]

    McMillan W L 1968 Phys. Rev. 167 331Google Scholar

    [54]

    Zhan J, Le C, Wu X, Hu J 2025 arXiv: 2503.18877 [cond-mat.supr-con]

    [55]

    Wang Y, Chen Z, Zhang Y, Jiang K, Hu J 2025 arXiv: 2501.08536 [cond-mat.str-el]

    [56]

    Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002Google Scholar

    [57]

    Jiang K Y, Cao Y H, Yang Q G, Lu H Y, Wang Q H 2025 Phys. Rev. Lett. 134 076001Google Scholar

    [58]

    Liu Y Q, Wang D, Wang Q H 2025 arXiv: 2505.07341 [cond-mat.supr-con]

    [59]

    Zhang J X, Zhang H K, You Y Z, Weng Z Y 2024 Phys. Rev. Lett. 133 126501Google Scholar

    [60]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [61]

    陈卓昱, 黄浩亮, 薛其坤 2025 物理学报 74 097401Google Scholar

    Chen Z Y, Huang H L, Xue Q K 2025 Acta Phys. Sin. 74 097401Google Scholar

    [62]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [63]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H, Zeng Q, Mao H k, Wang M 2025 Natl. Sci. Rev. nwaf220

    [64]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589Google Scholar

    [65]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17Google Scholar

    [66]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146Google Scholar

    [67]

    Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372[cond-mat.supr-con]

    [68]

    Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z H, Qian T, Lin J, He J, Sun Y J, Chen Z, Xue Q K 2025 Natl. Sci. Rev. nwaf205Google Scholar

    [69]

    Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, Yates J R 2020 J. Phys.: Condens. Matter 32 165902Google Scholar

    [70]

    Castellani C, Natoli C R, Ranninger J 1978 Phys. Rev. B 18 4945Google Scholar

    [71]

    Vaugier L, Jiang H, Biermann S 2012 Phys. Rev. B 86 165105Google Scholar

  • [1] Xiao Zhi-Feng, Wang Shou-Yu, Dai Ya-Ting, Kang Xin-Miao, Zhang Zhen-Hua, Liu Wei-Fang. Physical mechanism of Ge doping enhanced Ruddlesden-Popper structure quasi-2D Sr3Sn2O7 ceramic hybrid improper ferroelectricity. Acta Physica Sinica, 2024, 73(14): 147702. doi: 10.7498/aps.73.20240583
    [2] Wang Chao, Zhang Ming, Zhang Chi, Wang Ru-Zhi, Yan Hui. First-principle investigation of hybrid improper ferroelectricity of n = 2 Ruddlesden-Popper Sr3B2Se7 (B = Zr, Hf). Acta Physica Sinica, 2021, 70(11): 116302. doi: 10.7498/aps.70.20202142
    [3] Wang Guan-Shi,  Lin Yan-Ming,  Zhao Ya-Li,  Jiang Zhen-Yi,  Zhang Xiao-Dong. Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study. Acta Physica Sinica, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [4] Liu Xiao-Qiang, Wu Shu-Ya, Zhu Xiao-Li, Chen Xiang-Ming. Hybrid improper ferroelectricity and multiferroic in Ruddlesden-Popper structures. Acta Physica Sinica, 2018, 67(15): 157503. doi: 10.7498/aps.67.20180317
    [5] Jin Shi-Feng, Guo Jian-Gang, Wang Gang, Chen Xiao-Long. Research progress on FeSe-based superconducting materials. Acta Physica Sinica, 2018, 67(20): 207412. doi: 10.7498/aps.67.20181701
    [6] Xu Hai-Chao, Niu Xiao-Hai, Ye Zi-Rong, Feng Dong-Lai. Unified phase diagram of Fe-based superconductors based on electron correlation strength. Acta Physica Sinica, 2018, 67(20): 207405. doi: 10.7498/aps.67.20181541
    [7] Wu Kong-Ping, Sun Chang-Xu, Ma Wen-Fei, Wang Jie, Wei Wei, Cai Jun, Chen Chang-Zhao, Ren Bin, Sang Li-Wen, Liao Mei-Yong. Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation. Acta Physica Sinica, 2017, 66(8): 088102. doi: 10.7498/aps.66.088102
    [8] Deng Cheng-Zhi, Tian Wei, Chen Pan, Wang Sheng-Qian, Zhu Hua-Sheng, Hu Sai-Feng. Infrared image super-resolution via locality-constrained group sparse model. Acta Physica Sinica, 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [9] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [10] Yang Kun, Liu Xin-Xin, Li Xiao-Wei. Influence of data interpolation on positron emission tomography image tomography reconstruction. Acta Physica Sinica, 2013, 62(14): 147802. doi: 10.7498/aps.62.147802
    [11] Zhao Jian-Hui. Ground state phase diagram of the quantum spin 1 Blume-Capel model: reduced density fidelity study. Acta Physica Sinica, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [12] Chen Wen-Bin, Tao Xiang-Ming, Chen Xin, Tan Ming-Qiu. A density-functional theory study on the chemisorption and STM images of Ag(100)/O surface. Acta Physica Sinica, 2008, 57(1): 488-495. doi: 10.7498/aps.57.488
    [13] Chen Zhen-Ping, Xue Yun-Cai, Su Yu-Ling, Gong Shi-Cheng, Zhang Jin-Cang. Phase structures and local electron structures of Gd-doped YBa2Cu3O7-δ systems. Acta Physica Sinica, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [14] Jia Jin-Feng, Dong Guo-Cai, Wang Li-Li, Ma Xu-Cun, Xue Qi-Kun, Y. Hasegawa T. Sakurai. Local work function measurement on Cu(111)-Au and Cu(111)-Pd surfaces. Acta Physica Sinica, 2005, 54(4): 1513-1527. doi: 10.7498/aps.54.1513
    [15] Tao Xiang-Ming, Tan Ming-Qiu, Xu Xiao-Jun, Cai Jian-Qiu, Chen Wen-Bin, Zhao Xin-Xin. Theoretical study on the atomic structure, electronic states, and STM image of c(2×2) Cu(001)/O surface. Acta Physica Sinica, 2004, 53(11): 3858-3862. doi: 10.7498/aps.53.3858
    [16] TONG HONG-YONG, GU MU, TANG XUE-FENG, LIANG LING, YAO MING-ZHEN. ELECTRONIC STRUCTURES OF PbWO4 CRYSTAL CALCULATED IN TERMS OF DENSITY FUNCTIONAL THEORY. Acta Physica Sinica, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
    [17] ZHOU XU-BIN, JI HANG, LI XIAO-WEI, ZHAO RU-GUANG, YANG WEI-SHENG. INVESTIGATION OF THE ATOMIC STRUCTURE OF SURFACES BY MEANS OF FORWARD SCATTERING OF MEDIUM ENERGY ELECTRONS. Acta Physica Sinica, 1997, 46(8): 1535-1542. doi: 10.7498/aps.46.1535
    [18] JIANG KAI-MING, SHI FA-JIAN, LIN ZONG-HAN. . Acta Physica Sinica, 1995, 44(10): 1595-1606. doi: 10.7498/aps.44.1595
    [19] HAN FEI, MA BEN-KUN. GROWTH OF INTERFACE WITH AN EXTERNAL FIELD. Acta Physica Sinica, 1993, 42(11): 1812-1816. doi: 10.7498/aps.42.1812
    [20] XIONG SHI-JIE, CAI JIAN-HUA. SCALING THEORY OF ANDERSON LOCALIZATION IN DISORDERED SYSTEMS WITH SPACE MODULATIONS A REAL SPACE RENORMALIZATION GROUP APPROACH. Acta Physica Sinica, 1985, 34(12): 1530-1538. doi: 10.7498/aps.34.1530
Metrics
  • Abstract views:  400
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2025
  • Accepted Date:  23 July 2025
  • Available Online:  14 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回