-
Recent experimental studies on the bilayer Ruddlesden-Popper phase nickelate La3Ni2O7 have shown that in the superconducting region, its superconducting transition temperature decreases monotonically from 83 K at 18 GPa as pressure further increases, exhibiting a nearly right-triangular temperature-pressure phase diagram that is different from the dome-shaped diagrams observed in cuprates and iron-based superconductors under either doping or pressure. It is important to understand this anomalous phase diagram in elucidating the superconducting mechanism of La3Ni2O7. Since the electron-phonon coupling mechanism cannot account for the high superconducting transition temperatures in nickelate superconductors, in this work, the pressure dependence of the transition temperature is investigated from the perspective of the itinerant electrons picture and the local spin picture. By combining the density functional theory (DFT) and the unbiased singular-mode functional renormalization group (SM-FRG) method, it is found that the pairing symmetry is consistently an $s_\pm$-wave, driven by spin fluctuations that become progressively weakened under pressure, thereby decreasing in the superconducting transition temperature, which is in qualitative agreement with the experimental observation. On the other hand, we estimate that the pressure dependence in the local spin picture contradicts with the experimental result. Therefore, the pressure dependence of superconducting transition temperature is more consistent with the itinerant electrons picture. Admittedly, we only made a rough estimation based on the local spin picture. It is expected that further and more detailed research will be conducted on the pressure dependence of superconducting transition temperature from the local spin picture, providing deeper insights into the underlying superconducting mechanism of La3Ni2O7.
-
Keywords:
- Ruddlesden-Popper phase nickelate /
- superconducting phase diagram /
- functional renormalization group /
- itinerant electrons picture /
- local spin picture
[1] Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624
Google Scholar
[2] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493
Google Scholar
[3] Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570
Google Scholar
[4] Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302
Google Scholar
[5] Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269
Google Scholar
[6] Zhang M X, Pei C Y, Wang Q, Zhao Y, Li C H, Cao W Z, Zhu S H, Wu J F, Qi Y P 2024 J. Mater. Sci. Technol. 185 147
Google Scholar
[7] Wang G, Wang N, Wang Y, Shi L, Shen X, Hou J, Ma H, Yang P, Liu Z, Zhang H, Dong X, Sun J, Wang B, Jiang K, Hu J, Uwatoko Y, Cheng J 2023 arXiv: 2311.08212[cond-mat.supr-con]
[8] Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506
Google Scholar
[9] Zhou Y Z, Guo J, Cai S, Sun H L, Li C Y, Zhao J Y, Wang P Y, Han J Y, Chen X T, Chen Y J, Wu Q, Ding Y, Xiang T, Mao H K, Sun L L 2025 Matter Radiat. Extremes 10 027801
Google Scholar
[10] Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K j, Guo E J 2024 Commun. Mater. 5 32
Google Scholar
[11] Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503
Google Scholar
[12] Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 Inorg. Chem. 63 5020
Google Scholar
[13] Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847
Google Scholar
[14] Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373
Google Scholar
[15] Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040
Google Scholar
[16] Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402
Google Scholar
[17] Lei Y H, Wang Y H, Song J H, Ge J X, Wu D R, Zhang Y L, Li C J 2024 Chin. Phys. B 33 096801
Google Scholar
[18] 沈瑶 2024 物理学报 73 197104
Google Scholar
Shen Y 2024 Acta Phys. Sin. 73 197104
Google Scholar
[19] Huang X, Zhang H Y, Li J Y, Huo M W, Chen J F, Qiu Z Y, Ma P Y, Huang C X, Sun H L, Wang M 2024 Chin. Phys. Lett. 41 127403
Google Scholar
[20] Luo Z H, Hu X W, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001
Google Scholar
[21] Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505
Google Scholar
[22] Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002
Google Scholar
[23] Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2025 Phys. Rev. B 111 174506
Google Scholar
[24] Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501
Google Scholar
[25] Wú W, Luo Z H, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402
Google Scholar
[26] Cao Y, Yang Y F 2024 Phys. Rev. B 109 L081105
Google Scholar
[27] Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515
Google Scholar
[28] Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002
Google Scholar
[29] Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002
Google Scholar
[30] Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470
Google Scholar
[31] Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511
Google Scholar
[32] Liao Z G, Chen L, Duan G J, Wang Y M, Liu C L, Yu R, Si Q M 2023 Phys. Rev. B 108 214522
Google Scholar
[33] Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502
Google Scholar
[34] Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108
Google Scholar
[35] Jiang K, Wang Z, Zhang F C 2024 Chin. Phys. Lett. 41 017402
Google Scholar
[36] Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501
Google Scholar
[37] Tian Y H, Chen Y, Wang J M, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165154
Google Scholar
[38] Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504
Google Scholar
[39] Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054
Google Scholar
[40] Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114
Google Scholar
[41] Qu X Z, Qu D W, Li W, Su G 2023 arXiv: 2311.12769[cond-mat.str-el]
[42] Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108
Google Scholar
[43] Wang Y, Jiang K, Wang Z, Zhang F C, Hu J 2024 Phys. Rev. B 110 205122
Google Scholar
[44] Fan Z, Zhang J F, Zhan B, Lv D, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514
Google Scholar
[45] Luo Z H, Lv B, Wang M, Wu W, Yao D X 2024 npj Quantum Mater. 9 61
Google Scholar
[46] Shen Y, Qin M L, Zhang G M 2023 Chin. Phys. Lett. 40 127401
Google Scholar
[47] Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403
Google Scholar
[48] Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503
Google Scholar
[49] Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411
Google Scholar
[50] Yang Y F 2025 Chin. Phys. Lett. 42 017301
Google Scholar
[51] Zhang F C, Rice T M 1988 Phys. Rev. B 37 3759
Google Scholar
[52] Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80
Google Scholar
[53] McMillan W L 1968 Phys. Rev. 167 331
Google Scholar
[54] Zhan J, Le C, Wu X, Hu J 2025 arXiv: 2503.18877 [cond-mat.supr-con]
[55] Wang Y, Chen Z, Zhang Y, Jiang K, Hu J 2025 arXiv: 2501.08536 [cond-mat.str-el]
[56] Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002
Google Scholar
[57] Jiang K Y, Cao Y H, Yang Q G, Lu H Y, Wang Q H 2025 Phys. Rev. Lett. 134 076001
Google Scholar
[58] Liu Y Q, Wang D, Wang Q H 2025 arXiv: 2505.07341 [cond-mat.supr-con]
[59] Zhang J X, Zhang H K, You Y Z, Weng Z Y 2024 Phys. Rev. Lett. 133 126501
Google Scholar
[60] Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641
Google Scholar
[61] 陈卓昱, 黄浩亮, 薛其坤 2025 物理学报 74 097401
Google Scholar
Chen Z Y, Huang H L, Xue Q K 2025 Acta Phys. Sin. 74 097401
Google Scholar
[62] Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935
Google Scholar
[63] Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H, Zeng Q, Mao H k, Wang M 2025 Natl. Sci. Rev. nwaf220
[64] Stewart G R 2011 Rev. Mod. Phys. 83 1589
Google Scholar
[65] Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17
Google Scholar
[66] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146
Google Scholar
[67] Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372[cond-mat.supr-con]
[68] Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z H, Qian T, Lin J, He J, Sun Y J, Chen Z, Xue Q K 2025 Natl. Sci. Rev. nwaf205
Google Scholar
[69] Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, Yates J R 2020 J. Phys.: Condens. Matter 32 165902
Google Scholar
[70] Castellani C, Natoli C R, Ranninger J 1978 Phys. Rev. B 18 4945
Google Scholar
[71] Vaugier L, Jiang H, Biermann S 2012 Phys. Rev. B 86 165105
Google Scholar
-
图 2 (a) 高压下La3Ni2O7的晶胞与原胞结构示意图; (b) 不同压力下原胞的能带结构及(c) 态密度(DOS)分布, 其中插图展示了费米能级$ E_\mathrm{F} $附近的DOS特征[57]
Figure 2. (a) Conventional cell and primitive cell for La3Ni2O7 under high pressure; (b) band structure and (c) DOS under different pressures for primitive cell, the insert shows the DOS near the $ E_\mathrm{F} $[57].
图 3 (a) La3Ni2O7在14.1, 50和90 GPa压力下, U = 3 eV, $ J_{\mathrm{H}} $ = 0.4 eV时, 超导(SC)、自旋密度波(SDW)和电荷密度波(CDW)通道中$ S^{-1} $随Λ变化的FRG流方程计算结果, 左插图展示50 GPa压力下费米面上的能隙函数分布, 右插图显示同压力下SDW通道最负奇异值$ S({\boldsymbol{q}}) $的空间分布特征[57]; (b) La3Ni2O7超导转变温度$ T_{\mathrm{c}} $随压力的相图[57], $ T^{{\mathrm{onset}}}_{\mathrm{c}} $和$ {\mathrm{T}}^{{\mathrm{mid}}}_{\mathrm{c}} $引自实验数据[63]用于对比, 费米能处态密度也展示出来用于对比
Figure 3. (a) FRG flows of $ S^{-1} $ versus Λ in the SC, SDW, and CDW channels of La3Ni2O7, respectively, at pressures 14.1, 50, and 90 GPa with U = 3 eV, $ J_{\mathrm{H}} $ = 0.4 eV; the left subfigure present the gap function on the Fermi surfaces, the right subfigure presents the leading negative $ S({\boldsymbol{q}}) $ in the SDW channel, both subfigures are the results at pressure 50 GPa[57]; (b) phase diagram of superconducting $ T_{\mathrm{c}} $ versus pressure of La3Ni2O7[57], the $ T^{{\mathrm{onset}}}_{\mathrm{c}} $ and $ T^{{\mathrm{mid}}}_{\mathrm{c}} $ are extracted from the experimental work[63] for comparison, the DOS at the $ {E}_{\mathrm{F}}$ ($ {N}_{\mathrm{F}} $) versus pressure is also shown for comparison.
表 1 不同压力下La3Ni2O7双层双轨道紧束缚模型的在位能$ \varepsilon_a $与跃迁积分$ t_\delta^{ab} $参数表(其中x和z分别表示$ 3 {\mathrm{d}}_{x^2-y^2} $/$ 3 {\mathrm{d}}_{3 z^2-r^2} $轨道, 垂直层间距设定为1/2). 压力单位为GPa, $ \varepsilon_a $与$ t_\delta^{ab} $单位均为eV[57]
Table 1. On-site energies $ \varepsilon_a $ and hopping integrals $ t_\delta^{ab} $ of the bilayer two-orbital tight-binding model for La3Ni2O7 under different pressures. Here, x and z denote the $ 3 {\mathrm{d}}_{x^2-y^2} $/$ 3 {\mathrm{d}}_{3 z^2-r^2} $ orbitals, respectively. Note that the vertical interlayer distance is assigned as 1/2. The unit of pressure is GPa, and the unit of $ \varepsilon_a $ and $ t_\delta^{ab} $ are eV[57].
Pressure $ \varepsilon_x $ $ \varepsilon_z $ $ t_{(100)}^{x x} $ $ t_{(100)}^{z z} $ $ t_{(100)}^{x z} $ $ t_{\left(00\frac{1}{2}\right)}^{x x} $ $ t_{\left(00\frac{1}{2}\right)}^{z z} $ $ t_{(110)}^{x x} $ $ t_{(110)}^{z z} $ $ t_{\left(10\frac{1}{2}\right)}^{x z} $ 14.1 0.728 0.402 –0.470 –0.118 0.235 0.008 –0.623 0.071 –0.018 –0.036 16.1 0.737 0.407 –0.476 –0.119 0.238 0.009 –0.629 0.071 –0.018 –0.037 19.7 0.747 0.411 –0.483 –0.121 0.242 0.009 –0.637 0.071 –0.018 –0.037 21.3 0.749 0.412 –0.486 –0.123 0.243 0.008 –0.640 0.071 –0.018 –0.037 25.7 0.761 0.416 –0.495 –0.125 0.247 0.009 –0.647 0.072 –0.018 –0.037 29.8 0.769 0.417 –0.501 –0.126 0.249 0.010 –0.651 0.072 –0.018 –0.036 40.0 0.803 0.426 –0.521 –0.134 0.259 0.009 –0.674 0.071 –0.015 –0.040 50.0 0.833 0.437 –0.535 –0.139 0.269 0.010 –0.698 0.073 –0.016 –0.042 60.0 0.847 0.435 –0.552 –0.145 0.273 0.011 –0.703 0.075 –0.016 –0.040 70.0 0.871 0.447 –0.566 –0.149 0.283 0.010 –0.723 0.073 –0.017 –0.041 80.0 0.896 0.453 –0.580 –0.153 0.287 0.009 –0.738 0.072 –0.015 –0.045 90.0 0.918 0.461 –0.593 –0.155 0.293 0.008 –0.753 0.071 –0.016 –0.046 -
[1] Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624
Google Scholar
[2] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493
Google Scholar
[3] Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570
Google Scholar
[4] Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302
Google Scholar
[5] Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269
Google Scholar
[6] Zhang M X, Pei C Y, Wang Q, Zhao Y, Li C H, Cao W Z, Zhu S H, Wu J F, Qi Y P 2024 J. Mater. Sci. Technol. 185 147
Google Scholar
[7] Wang G, Wang N, Wang Y, Shi L, Shen X, Hou J, Ma H, Yang P, Liu Z, Zhang H, Dong X, Sun J, Wang B, Jiang K, Hu J, Uwatoko Y, Cheng J 2023 arXiv: 2311.08212[cond-mat.supr-con]
[8] Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506
Google Scholar
[9] Zhou Y Z, Guo J, Cai S, Sun H L, Li C Y, Zhao J Y, Wang P Y, Han J Y, Chen X T, Chen Y J, Wu Q, Ding Y, Xiang T, Mao H K, Sun L L 2025 Matter Radiat. Extremes 10 027801
Google Scholar
[10] Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K j, Guo E J 2024 Commun. Mater. 5 32
Google Scholar
[11] Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503
Google Scholar
[12] Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 Inorg. Chem. 63 5020
Google Scholar
[13] Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847
Google Scholar
[14] Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373
Google Scholar
[15] Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040
Google Scholar
[16] Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402
Google Scholar
[17] Lei Y H, Wang Y H, Song J H, Ge J X, Wu D R, Zhang Y L, Li C J 2024 Chin. Phys. B 33 096801
Google Scholar
[18] 沈瑶 2024 物理学报 73 197104
Google Scholar
Shen Y 2024 Acta Phys. Sin. 73 197104
Google Scholar
[19] Huang X, Zhang H Y, Li J Y, Huo M W, Chen J F, Qiu Z Y, Ma P Y, Huang C X, Sun H L, Wang M 2024 Chin. Phys. Lett. 41 127403
Google Scholar
[20] Luo Z H, Hu X W, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001
Google Scholar
[21] Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505
Google Scholar
[22] Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002
Google Scholar
[23] Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2025 Phys. Rev. B 111 174506
Google Scholar
[24] Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501
Google Scholar
[25] Wú W, Luo Z H, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402
Google Scholar
[26] Cao Y, Yang Y F 2024 Phys. Rev. B 109 L081105
Google Scholar
[27] Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515
Google Scholar
[28] Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002
Google Scholar
[29] Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002
Google Scholar
[30] Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470
Google Scholar
[31] Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511
Google Scholar
[32] Liao Z G, Chen L, Duan G J, Wang Y M, Liu C L, Yu R, Si Q M 2023 Phys. Rev. B 108 214522
Google Scholar
[33] Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502
Google Scholar
[34] Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108
Google Scholar
[35] Jiang K, Wang Z, Zhang F C 2024 Chin. Phys. Lett. 41 017402
Google Scholar
[36] Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501
Google Scholar
[37] Tian Y H, Chen Y, Wang J M, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165154
Google Scholar
[38] Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504
Google Scholar
[39] Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054
Google Scholar
[40] Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114
Google Scholar
[41] Qu X Z, Qu D W, Li W, Su G 2023 arXiv: 2311.12769[cond-mat.str-el]
[42] Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108
Google Scholar
[43] Wang Y, Jiang K, Wang Z, Zhang F C, Hu J 2024 Phys. Rev. B 110 205122
Google Scholar
[44] Fan Z, Zhang J F, Zhan B, Lv D, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514
Google Scholar
[45] Luo Z H, Lv B, Wang M, Wu W, Yao D X 2024 npj Quantum Mater. 9 61
Google Scholar
[46] Shen Y, Qin M L, Zhang G M 2023 Chin. Phys. Lett. 40 127401
Google Scholar
[47] Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403
Google Scholar
[48] Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503
Google Scholar
[49] Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411
Google Scholar
[50] Yang Y F 2025 Chin. Phys. Lett. 42 017301
Google Scholar
[51] Zhang F C, Rice T M 1988 Phys. Rev. B 37 3759
Google Scholar
[52] Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80
Google Scholar
[53] McMillan W L 1968 Phys. Rev. 167 331
Google Scholar
[54] Zhan J, Le C, Wu X, Hu J 2025 arXiv: 2503.18877 [cond-mat.supr-con]
[55] Wang Y, Chen Z, Zhang Y, Jiang K, Hu J 2025 arXiv: 2501.08536 [cond-mat.str-el]
[56] Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002
Google Scholar
[57] Jiang K Y, Cao Y H, Yang Q G, Lu H Y, Wang Q H 2025 Phys. Rev. Lett. 134 076001
Google Scholar
[58] Liu Y Q, Wang D, Wang Q H 2025 arXiv: 2505.07341 [cond-mat.supr-con]
[59] Zhang J X, Zhang H K, You Y Z, Weng Z Y 2024 Phys. Rev. Lett. 133 126501
Google Scholar
[60] Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641
Google Scholar
[61] 陈卓昱, 黄浩亮, 薛其坤 2025 物理学报 74 097401
Google Scholar
Chen Z Y, Huang H L, Xue Q K 2025 Acta Phys. Sin. 74 097401
Google Scholar
[62] Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935
Google Scholar
[63] Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H, Zeng Q, Mao H k, Wang M 2025 Natl. Sci. Rev. nwaf220
[64] Stewart G R 2011 Rev. Mod. Phys. 83 1589
Google Scholar
[65] Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17
Google Scholar
[66] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146
Google Scholar
[67] Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372[cond-mat.supr-con]
[68] Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z H, Qian T, Lin J, He J, Sun Y J, Chen Z, Xue Q K 2025 Natl. Sci. Rev. nwaf205
Google Scholar
[69] Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, Yates J R 2020 J. Phys.: Condens. Matter 32 165902
Google Scholar
[70] Castellani C, Natoli C R, Ranninger J 1978 Phys. Rev. B 18 4945
Google Scholar
[71] Vaugier L, Jiang H, Biermann S 2012 Phys. Rev. B 86 165105
Google Scholar
Catalog
Metrics
- Abstract views: 400
- PDF Downloads: 19
- Cited By: 0