Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pressure dependence of superconducting transition temperature in bilayer nickelate La3Ni2O7: Itinerant electrons and local spin picture

LU Hongyan WANG Qianghua

Citation:

Pressure dependence of superconducting transition temperature in bilayer nickelate La3Ni2O7: Itinerant electrons and local spin picture

LU Hongyan, WANG Qianghua
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Recent experimental studies on the bilayer Ruddlesden-Popper phase nickelate La3Ni2O7 have revealed that in the superconducting region, its superconducting transition temperature decreases monotonically from 83 K at 18 GPa with increasing pressure, exhibiting a nearly right-triangular superconducting transition temperature-pressure phase diagram distinct from the dome-shaped diagrams observed in cuprates and iron-based superconductors under doping or pressure. Understanding this anomalous phase diagram is crucial for elucidating the superconducting mechanism of La3Ni2O7. Since the electron-phonon coupling mechanism cannot account for the high superconducting transition temperatures in nickelate superconductors, this study investigates the pressure dependence of the transition temperature from the perspective of itinerant electrons picture and local spin picture. By combining the density functional theory (DFT) and the unbiased singular-mode functional renormalization group (SM-FRG) method, we find the pairing symmetry is consistently an s±-wave triggered by spin fluctuations which become increasingly weakened by pressure and consequently lead to decreasing superconducting transition temperature, in qualitative agreement with the experiment. On the other hand, we estimate that the pressure dependence in the local spin picture contradicts with experimental result. Thus, the pressure dependence of superconducting transition temperature is more in line with the itinerant electrons picture. Admittedly, we only made a rough estimation based on the local spin picture. It is expected to conduct further and more detailed research on the pressure dependence of superconducting transition temperature starting from the local spin picture, providing more insights into the underlying superconducting mechanism of La3Ni2O7.
  • [1]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature(London) 572 624

    [2]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, Wang M 2023 Nature(London) 621 493

    [3]

    Liu Z, Huo M, Li J, Li Q, Liu Y, Dai Y, Zhou X, Hao J, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570

    [4]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302

    [5]

    Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H 2024 Nat. Phys. 20 1269

    [6]

    Zhang M, Pei C, Wang Q, Zhao Y, Li C, Cao W, Zhu S, Wu J, Qi Y 2024 J. Mater. Sci. Technol. 185 147

    [7]

    Wang G, Wang N, Wang Y, Shi L, Shen X, Hou J, Ma H, Yang P, Liu Z, Zhang H, Dong X, Sun J, Wang B, Jiang K, Hu J, Uwatoko Y, Cheng J 2023 arXiv: 2311.08212[cond-mat.supr-con]

    [8]

    Wang L, Li Y, Xie S Y, Liu F, Sun H, Huang C, Gao Y, Nakagawa T, Fu B, Dong B, Cao Z, Yu R, Kawaguchi S I, Kadobayashi H, Wang M, Jin C, Mao H k, Liu H 2024 J. Am. Chem. Soc. 146 7506

    [9]

    Zhou Y, Guo J, Cai S, Sun H, Wang P, Zhao J, Han J, Chen X, Chen Y, Wu Q, Ding Y, Xiang T, Mao H, Sun L 2025 Matter Radiat. Extremes 10 027801

    [10]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N, Chen S, Hong H, Rong D, Wang Q, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q, Si L, Jin K j, Guo E J 2024 Commun. Mater. 5 32

    [11]

    Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503

    [12]

    Wang H, Chen L, Rutherford A, Zhou H, Xie W 2024 Inorg. Chem. 63 5020

    [13]

    Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y, Chen Z 2024 Nature(London) 630 847

    [14]

    Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, Zhu W, Qu G, Chen C Q, Huo M, Huang Y, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Mao H, Liu G, Xu Z, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373

    [15]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040

    [16]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402

    [17]

    Lei Y, Wang Y, Song J, Ge J, Wu D, Zhang Y, Li C 2024 Chin. Phys. B 33 096801

    [18]

    Shen Y 2024 Acta Phys. Sin. 73 197104

    [19]

    Huang X, Zhang H, Li J, Huo M, Chen J, Qiu Z, Ma P, Huang C, Sun H, Wang M 2024 Chin. Phys. Lett. 41 127403

    [20]

    Luo Z, Hu X, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001

    [21]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505

    [22]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002

    [23]

    Gu Y, Le C, Yang Z, Wu X, Hu J 2025 Phys. Rev. B 111 174506

    [24]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501

    [25]

    Wú W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402

    [26]

    Cao Y, Yang Y f 2024 Phys. Rev. B 109 L081105

    [27]

    Chen X, Jiang P, Li J, Zhong Z, Lu Y 2025 Phys. Rev. B 111 014515

    [28]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002

    [29]

    Lu C, Pan Z, Yang F, Wu C 2024 Phys. Rev. Lett. 132 146002

    [30]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470

    [31]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511

    [32]

    Liao Z, Chen L, Duan G, Wang Y, Liu C, Yu R, Si Q 2023 Phys. Rev. B 108 214522

    [33]

    Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502

    [34]

    Yang Y f, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108

    [35]

    Jiang K, Wang Z, Zhang F C 2024 Chin. Phys. Lett. 41 017402

    [36]

    Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501

    [37]

    Tian Y H, Chen Y, Wang J M, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165154

    [38]

    Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504

    [39]

    Xia C, Liu H, Zhou S, Chen H 2025 Nat. Commun. 16 1054

    [40]

    Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114

    [41]

    Qu X Z, Qu D W, Li W, Su G 2023 arXiv: 2311.12769[cond-mat.str-el]

    [42]

    Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108

    [43]

    Wang Y, Jiang K, Wang Z, Zhang F C, Hu J 2024 Phys. Rev. B 110 205122

    [44]

    Fan Z, Zhang J F, Zhan B, Lv D, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514

    [45]

    Luo Z, Lv B, Wang M, Wu W, Yao D X 2024 npj Quantum Mater. 9 61

    [46]

    Shen Y, Qin M, Zhang G M 2023 Chin. Phys. Lett. 40 127401

    [47]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403

    [48]

    Jiang R, Hou J, Fan Z, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503

    [49]

    Huo Z, Luo Z, Zhang P, Yang A, Liu Z, Tao X, Zhang Z, Guo S, Jiang Q, Chen W, Yao D X, Duan D, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411

    [50]

    Yang Y F 2025 Chin. Phys. Lett. 42 017301

    [51]

    Zhang F C, Rice T M 1988 Phys. Rev. B 37 3759

    [52]

    Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80

    [53]

    McMillan W L 1968 Phys. Rev. 167 331

    [54]

    Zhan J, Le C, Wu X, Hu J 2025 arXiv: 2503.18877[cond-mat.supr-con]

    [55]

    Wang Y, Chen Z, Zhang Y, Jiang K, Hu J 2025 arXiv: 2501.08536[cond-mat.str-el]

    [56]

    Zhan J, Gu Y, Wu X, Hu J 2025 Phys. Rev. Lett. 134 136002

    [57]

    Jiang K Y, Cao Y H, Yang Q G, Lu H Y, Wang Q H 2025 Phys. Rev. Lett. 134 076001

    [58]

    Liu Y Q, Wang D, Wang Q H 2025 arXiv: 2505.07341[cond-mat.supr-con]

    [59]

    Zhang J X, Zhang H K, You Y Z, Weng Z Y 2024 Phys. Rev. Lett. 133 126501

    [60]

    Zhou G, Lv W, Wang H, Nie Z, Chen Y, Li Y, Huang H, Chen W, Sun Y, Xue Q K, Chen Z 2025 Nature (London) 640 641

    [61]

    Chen Z, Huang H, Xue Q 2025 Acta Phys. Sin. 74 097401

    [62]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature (London) 638 935

    [63]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H, Zeng Q, Mao H k, Wang M 2025 Natl. Sci. Rev nwaf220

    [64]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [65]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17

    [66]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [67]

    Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372[cond-mat.supr-con]

    [68]

    Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z H, Qian T, Lin J, He J, Sun Y J, Chen Z, Xue Q K 2025 Natl. Sci. Rev. nwaf205

    [69]

    Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, Yates J R 2020 J. Phys.: Condens. Matter 32 165902

    [70]

    Castellani C, Natoli C R, Ranninger J 1978 Phys. Rev. B 18 4945

    [71]

    Vaugier L, Jiang H, Biermann S 2012 Phys. Rev. B 86 165105

  • [1] Liu Yi, Hao Si-Zhong, Tian Yu-Lin, Liu Guo-Zhong. Two-dimensional phase sensitive detector and its application to demodulating amplitude modulated image. Acta Physica Sinica, doi: 10.7498/aps.68.20190803
    [2] Wang Guan-Shi,  Lin Yan-Ming,  Zhao Ya-Li,  Jiang Zhen-Yi,  Zhang Xiao-Dong. Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study. Acta Physica Sinica, doi: 10.7498/aps.67.20181520
    [3] Jin Shi-Feng, Guo Jian-Gang, Wang Gang, Chen Xiao-Long. Research progress on FeSe-based superconducting materials. Acta Physica Sinica, doi: 10.7498/aps.67.20181701
    [4] Xu Hai-Chao, Niu Xiao-Hai, Ye Zi-Rong, Feng Dong-Lai. Unified phase diagram of Fe-based superconductors based on electron correlation strength. Acta Physica Sinica, doi: 10.7498/aps.67.20181541
    [5] Wu Kong-Ping, Sun Chang-Xu, Ma Wen-Fei, Wang Jie, Wei Wei, Cai Jun, Chen Chang-Zhao, Ren Bin, Sang Li-Wen, Liao Mei-Yong. Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation. Acta Physica Sinica, doi: 10.7498/aps.66.088102
    [6] Deng Cheng-Zhi, Tian Wei, Chen Pan, Wang Sheng-Qian, Zhu Hua-Sheng, Hu Sai-Feng. Infrared image super-resolution via locality-constrained group sparse model. Acta Physica Sinica, doi: 10.7498/aps.63.044202
    [7] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, doi: 10.7498/aps.63.047101
    [8] Yang Kun, Liu Xin-Xin, Li Xiao-Wei. Influence of data interpolation on positron emission tomography image tomography reconstruction. Acta Physica Sinica, doi: 10.7498/aps.62.147802
    [9] Zhao Jian-Hui. Ground state phase diagram of the quantum spin 1 Blume-Capel model: reduced density fidelity study. Acta Physica Sinica, doi: 10.7498/aps.61.220501
    [10] Yang Xiao-Ping, Zhai Hong-Chen, Wang Ming-Wei. Gray-image information hiding based on kinoform. Acta Physica Sinica, doi: 10.7498/aps.57.847
    [11] Chen Wen-Bin, Tao Xiang-Ming, Chen Xin, Tan Ming-Qiu. A density-functional theory study on the chemisorption and STM images of Ag(100)/O surface. Acta Physica Sinica, doi: 10.7498/aps.57.488
    [12] Chen Zhen-Ping, Xue Yun-Cai, Su Yu-Ling, Gong Shi-Cheng, Zhang Jin-Cang. Phase structures and local electron structures of Gd-doped YBa2Cu3O7-δ systems. Acta Physica Sinica, doi: 10.7498/aps.54.5382
    [13] Jia Jin-Feng, Dong Guo-Cai, Wang Li-Li, Ma Xu-Cun, Xue Qi-Kun, Y. Hasegawa T. Sakurai. Local work function measurement on Cu(111)-Au and Cu(111)-Pd surfaces. Acta Physica Sinica, doi: 10.7498/aps.54.1513
    [14] Tao Xiang-Ming, Tan Ming-Qiu, Xu Xiao-Jun, Cai Jian-Qiu, Chen Wen-Bin, Zhao Xin-Xin. Theoretical study on the atomic structure, electronic states, and STM image of c(2×2) Cu(001)/O surface. Acta Physica Sinica, doi: 10.7498/aps.53.3858
    [15] TONG HONG-YONG, GU MU, TANG XUE-FENG, LIANG LING, YAO MING-ZHEN. ELECTRONIC STRUCTURES OF PbWO4 CRYSTAL CALCULATED IN TERMS OF DENSITY FUNCTIONAL THEORY. Acta Physica Sinica, doi: 10.7498/aps.49.1545
    [16] SHI YUN-LONG, ZHANG YU-MEI, CHEN HONG, WU XIANG. PHASE EIAGRAM OF ONE-DIMENSIONAL BOSONS IN AN ARRAY OF LOCAL POTENTIALS. Acta Physica Sinica, doi: 10.7498/aps.47.1870
    [17] ZHOU XU-BIN, JI HANG, LI XIAO-WEI, ZHAO RU-GUANG, YANG WEI-SHENG. INVESTIGATION OF THE ATOMIC STRUCTURE OF SURFACES BY MEANS OF FORWARD SCATTERING OF MEDIUM ENERGY ELECTRONS. Acta Physica Sinica, doi: 10.7498/aps.46.1535
    [18] JIANG KAI-MING, SHI FA-JIAN, LIN ZONG-HAN. . Acta Physica Sinica, doi: 10.7498/aps.44.1595
    [19] HAN FEI, MA BEN-KUN. GROWTH OF INTERFACE WITH AN EXTERNAL FIELD. Acta Physica Sinica, doi: 10.7498/aps.42.1812
    [20] XIONG SHI-JIE, CAI JIAN-HUA. SCALING THEORY OF ANDERSON LOCALIZATION IN DISORDERED SYSTEMS WITH SPACE MODULATIONS A REAL SPACE RENORMALIZATION GROUP APPROACH. Acta Physica Sinica, doi: 10.7498/aps.34.1530
Metrics
  • Abstract views:  42
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Available Online:  14 July 2025
  • /

    返回文章
    返回