Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calculation and analysis of thermal scattering law data of sub-stoichiometric metal hydrides

MA Yutu ZU Tiejun WU Hongchun CAO Liangzhi

Citation:

Calculation and analysis of thermal scattering law data of sub-stoichiometric metal hydrides

MA Yutu, ZU Tiejun, WU Hongchun, CAO Liangzhi
cstr: 32037.14.aps.74.20250928
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Metal hydrides are promising moderator materials in advanced reactors, where their thermal neutron scattering cross sections significantly affect the accuracy of reactor design. This study uses special quasi random structure (SQS) and first-principles lattice dynamics methods to calculate parameters such as the phonon densities of states of sub-stoichiometric zirconium hydride (ZrHx) and yttrium hydride (YHx). Based on these parameters, thermal scattering law (TSL) data for sub-stoichiometric hydrides are generated using the nuclear data processing code NECP-Atlas. The influences of hydrogen content on the thermal scattering cross sections of hydrides and the effective multiplication factor (keff) values of critical assemblies are analyzed. The result shows that variations in hydrogen content within hydrides lead to differences in thermal scattering cross sections, consequently affecting the neutron transport calculations of nuclear reactor. For the ICT003 and ICT013 benchmarks loaded with ZrHx (with H/Zr ≈ 1.6), using the TSL data derived from ZrHx with other hydrogen content results in a maximum deviation of 104 pcm in keff. For the HCM003 benchmarks loaded with ZrH2, the use of TSL from ZrHx with other hydrogen content leads to a maximum deviation of 147 pcm in keff.
      Corresponding author: ZU Tiejun, tiejun@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12135019) and the National Key Research and Development Program of China (Grant No. 2022YFB1902600).
    [1]

    Handbook on the Material Properties of Yttrium Hydride for High Temperature Moderator Applications, Hu X X, Wang H, Linton K, Le Coq A, Terrani K A https://www.osti.gov/servlets/purl/1808171/ [2021-7-15]

    [2]

    Paramonov D V, El-Genk M S 1994 Nucl. Technol. 108 157Google Scholar

    [3]

    Evans J A, Sweet R T, Medvedev P G, Wagner A R, Parisi C, Lange T L, Perez E, Rice F, Jue J F, Woolstenhulme E, Arafat Y 2024 J. Nucl. Mater. 598 25Google Scholar

    [4]

    Snoj L, Zerovnik G, Trkov A 2012 Appl. Radiat. Isotopes 70 483Google Scholar

    [5]

    Betzler B R, Ade B J, Jain P K, Wysocki A, Chesser P C, Kirkland W M, Cetiner M S, Bergeron A, Heidet F, Terrani K 2022 Nucl. Sci. Eng. 196 1399Google Scholar

    [6]

    Mehta V, Vogel S, Kotlyar D, Cooper M 2022 Metals 12 199Google Scholar

    [7]

    Wang X, Tang M, Jiang M X, Chen Y C, Liu Z X, Deng H Q 2024 Chin. Phys. B 33 076103Google Scholar

    [8]

    Mehta V K, Vogel S C, Shivprasad A P, Luther E P, Andersson D A, Rao D V, Kotlyar D, Clausen B, Cooper M W D 2021 J. Nucl. Mater. 547 152837Google Scholar

    [9]

    ENDF-6 Formats Manual, Brown D A https://www.nndc.bnl.gov/endfdocs/ENDF-102-2023.pdf [2023-9-28]

    [10]

    Tang Y Q, Zu T J, Yi S Y, Cao L Z, Wu H C 2020 Annals of Nuclear Energy 153 108044Google Scholar

    [11]

    Squires G L 1996 Introduction to the Theory of Thermal Neutron Scattering (Massachusetts: Courier Corporation) p30

    [12]

    Zu T J, Tang Y Q, Wang L P, Cao L Z, Wu H C 2021 Ann. Nucl. Energy 161 108489Google Scholar

    [13]

    Wang L P, Wan C H, Cao L Z, Wu H C, Sjstrand H 2021 Ann. Nucl. Energy 151 107920Google Scholar

    [14]

    Švajger I, Fleming N, Hawari A, Laramee B, Noguere G, Snoj L, Trkov A 2025 Nucl. Eng. Technol. 57 103834Google Scholar

    [15]

    Mehta V K, Cooper M W D, Wilkerson R B, Kotlyar D, Rao D V, Vogel S C 2021 Nucl. Sci. Eng. 195 563Google Scholar

    [16]

    Mehta V K, Rehn D A, Olsson P A T 2024 J. Nucl. Eng. 5 330Google Scholar

    [17]

    Trainer A, Forget B, Holmes J, Wormald J, Zerkle M 2025 Ann. Nucl. Energy 212 111034Google Scholar

    [18]

    Wormald J, Zerkle M, Holmes J 2021 J. Nucl. Eng. 2 105Google Scholar

    [19]

    Zerkle M L, Holmes J C, Wormald J L 2021 EPJ Web Conf. 247 09015Google Scholar

    [20]

    Ge Z G, Xu R R, Wu H C, Zhang Y, Chen G C, Jin Y L, Shu N C, Chen Y J, Tao X, Tian Y, Liu P, Qian J, Wang J M, Zhang H Y, Liu L L, Huang X L 2020 EPJ Web Conf. 239 09001Google Scholar

    [21]

    Zu T J, Wu C Y, Feng H, Ma Y T, Cao L Z, Wu H C, Tang Y Q 2024 Prog. Nucl. Energy 177 105420Google Scholar

    [22]

    Placzek G 1952 Phys. Rev. 86 377Google Scholar

    [23]

    Coherent Scattering Law for Polycrystalline Beryllium, Borgonovi G M https://www.osti.gov/servlets/purl/4049796 [1969-5-16]

    [24]

    Fleming N C 2021 Ph. D. Dissertation (North Carolina: North Carolina State University

    [25]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [27]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355Google Scholar

    [28]

    Gajdos M, Hummer K, Kresse G, Furthmueller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [29]

    He Q M, Zheng Q, Li J, Wu H C, Shen W, Cao L Z, Liu Z Y, Xu J L 2021 Ann. Nucl. Energy 151 107978Google Scholar

    [30]

    Briggs J B, Scott L, Nouri A 2003 Nucl. Sci. Eng. 145 1Google Scholar

  • 图 1  δ-ZrH1.41, δ-ZrH1.59, δ-ZrH1.69的超晶胞

    Figure 1.  Super cell of δ-ZrH1.41, δ-ZrH1.59 and δ-ZrH1.69.

    图 2  δ-YH1.31, δ-YH1.59, δ-YH1.81的超晶胞

    Figure 2.  Super cell of δ-YH1.31, δ-YH1.59 and δ-YH1.81.

    图 3  不同氢含量下氢化物的归一化声子态密度 (a) ZrHx; (b) YHx

    Figure 3.  Normalized phonon density of state of hydrides with different hydrogen contents: (a) ZrHx; (b) YHx.

    图 4  不同氢含量下ZrHx的热散射截面 (a) 氢的非弹性散射截面; (b) 氢的非相干弹性散射截面; (c) 锆的非弹性散射截面; (d) 锆的相干弹性散射截面

    Figure 4.  Thermal scattering cross sections of ZrHx with different hydrogen contents: (a) Inelastic scattering cross section of H; (b) incoherent elastic scattering cross section of H; (c) inelastic scattering cross section of Zr; (d) coherent elastic scattering cross section of Zr

    图 5  不同氢含量下YHx的热散射截面 (a) 氢的非弹性散射截面; (b) 氢的非相干弹性散射截面; (c) 钇的非弹性散射截面; (d) 钇的相干弹性散射截面

    Figure 5.  Thermal scattering cross sections of YHx with different hydrogen contents: (a) Inelastic scattering cross section of H; (b) incoherent elastic scattering cross section of H; (c) inelastic scattering cross section of Y; (d) coherent elastic scattering cross section of Y.

    图 6  不同氢含量ZrHx中H的双微分散射截面 (a) 293.6 K; (b) 1200 K

    Figure 6.  Double differential scattering cross sections of H in ZrHx with different hydrogen contents: (a) 293.6 K; (b) 1200 K.

    图 7  不同氢含量YHx中H的双微分散射截面 (a) 293.6 K; (b) 1200 K

    Figure 7.  Double differential scattering cross sections of H in YHx with different hydrogen contents: (a) 293.6 K; (b) 1200 K.

    表 1  ICT003和ICT013系列基准题有效增殖系数计算结果

    Table 1.  The calculated effective multiplication factor for the ICT003 and ICT013 benchmarks.

    基准题序号ZrH1.59ZrH2ZrH1.69ZrH1.41
    keffkeff偏差/pcmkeff偏差/pcmkeff偏差/pcm
    ICT003_11.003081.00205–1031.00375671.00412104
    ICT003_21.007911.00697–941.00866751.0086473
    ICT013_11.012041.01194–101.01263591.0127470
    ICT013_21.011891.01167–221.01256671.0127283
    DownLoad: CSV

    表 2  HCM003系列基准题有效增殖系数计算结果

    Table 2.  The calculated effective multiplication factor for the HCM003 benchmarks.

    基准题序号ZrH2ZrH1.69ZrH1.59ZrH1.41
    keffkeff偏差/pcmkeff偏差/pcmkeff偏差/pcm
    HCM003_10.997600.99673–870.9976440.99705–55
    HCM003_20.997980.99692–1060.99776–220.99686–112
    HCM003_30.997780.99685–930.99745–330.99689–89
    HCM003_40.998180.99718–1000.99784–340.99693–125
    HCM003_50.998380.99691–1470.99789–490.99707–131
    HCM003_60.997950.99678–1170.99741–540.99705–90
    DownLoad: CSV
  • [1]

    Handbook on the Material Properties of Yttrium Hydride for High Temperature Moderator Applications, Hu X X, Wang H, Linton K, Le Coq A, Terrani K A https://www.osti.gov/servlets/purl/1808171/ [2021-7-15]

    [2]

    Paramonov D V, El-Genk M S 1994 Nucl. Technol. 108 157Google Scholar

    [3]

    Evans J A, Sweet R T, Medvedev P G, Wagner A R, Parisi C, Lange T L, Perez E, Rice F, Jue J F, Woolstenhulme E, Arafat Y 2024 J. Nucl. Mater. 598 25Google Scholar

    [4]

    Snoj L, Zerovnik G, Trkov A 2012 Appl. Radiat. Isotopes 70 483Google Scholar

    [5]

    Betzler B R, Ade B J, Jain P K, Wysocki A, Chesser P C, Kirkland W M, Cetiner M S, Bergeron A, Heidet F, Terrani K 2022 Nucl. Sci. Eng. 196 1399Google Scholar

    [6]

    Mehta V, Vogel S, Kotlyar D, Cooper M 2022 Metals 12 199Google Scholar

    [7]

    Wang X, Tang M, Jiang M X, Chen Y C, Liu Z X, Deng H Q 2024 Chin. Phys. B 33 076103Google Scholar

    [8]

    Mehta V K, Vogel S C, Shivprasad A P, Luther E P, Andersson D A, Rao D V, Kotlyar D, Clausen B, Cooper M W D 2021 J. Nucl. Mater. 547 152837Google Scholar

    [9]

    ENDF-6 Formats Manual, Brown D A https://www.nndc.bnl.gov/endfdocs/ENDF-102-2023.pdf [2023-9-28]

    [10]

    Tang Y Q, Zu T J, Yi S Y, Cao L Z, Wu H C 2020 Annals of Nuclear Energy 153 108044Google Scholar

    [11]

    Squires G L 1996 Introduction to the Theory of Thermal Neutron Scattering (Massachusetts: Courier Corporation) p30

    [12]

    Zu T J, Tang Y Q, Wang L P, Cao L Z, Wu H C 2021 Ann. Nucl. Energy 161 108489Google Scholar

    [13]

    Wang L P, Wan C H, Cao L Z, Wu H C, Sjstrand H 2021 Ann. Nucl. Energy 151 107920Google Scholar

    [14]

    Švajger I, Fleming N, Hawari A, Laramee B, Noguere G, Snoj L, Trkov A 2025 Nucl. Eng. Technol. 57 103834Google Scholar

    [15]

    Mehta V K, Cooper M W D, Wilkerson R B, Kotlyar D, Rao D V, Vogel S C 2021 Nucl. Sci. Eng. 195 563Google Scholar

    [16]

    Mehta V K, Rehn D A, Olsson P A T 2024 J. Nucl. Eng. 5 330Google Scholar

    [17]

    Trainer A, Forget B, Holmes J, Wormald J, Zerkle M 2025 Ann. Nucl. Energy 212 111034Google Scholar

    [18]

    Wormald J, Zerkle M, Holmes J 2021 J. Nucl. Eng. 2 105Google Scholar

    [19]

    Zerkle M L, Holmes J C, Wormald J L 2021 EPJ Web Conf. 247 09015Google Scholar

    [20]

    Ge Z G, Xu R R, Wu H C, Zhang Y, Chen G C, Jin Y L, Shu N C, Chen Y J, Tao X, Tian Y, Liu P, Qian J, Wang J M, Zhang H Y, Liu L L, Huang X L 2020 EPJ Web Conf. 239 09001Google Scholar

    [21]

    Zu T J, Wu C Y, Feng H, Ma Y T, Cao L Z, Wu H C, Tang Y Q 2024 Prog. Nucl. Energy 177 105420Google Scholar

    [22]

    Placzek G 1952 Phys. Rev. 86 377Google Scholar

    [23]

    Coherent Scattering Law for Polycrystalline Beryllium, Borgonovi G M https://www.osti.gov/servlets/purl/4049796 [1969-5-16]

    [24]

    Fleming N C 2021 Ph. D. Dissertation (North Carolina: North Carolina State University

    [25]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [27]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355Google Scholar

    [28]

    Gajdos M, Hummer K, Kresse G, Furthmueller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [29]

    He Q M, Zheng Q, Li J, Wu H C, Shen W, Cao L Z, Liu Z Y, Xu J L 2021 Ann. Nucl. Energy 151 107978Google Scholar

    [30]

    Briggs J B, Scott L, Nouri A 2003 Nucl. Sci. Eng. 145 1Google Scholar

  • [1] TAN Boyu, WANG Zhaohui, WU Hongyi, HAN Yinlu, XIAO Shiliang, WANG Hao, WANG Wenye, WANG Jimin, LI Yuzhao, LIU Yingyi, WANG Jincheng, TAO Xi, RUAN Xichao. Neutron-induced inelastic scattering cross-section measurement of 52Cr. Acta Physica Sinica, 2025, 74(7): 072901. doi: 10.7498/aps.74.20241660
    [2] Li Ming, Jin Ping-Shi, Cao Xun. Current research status of rare earth oxygenated hydride photochromic films. Acta Physica Sinica, 2022, 71(21): 218101. doi: 10.7498/aps.71.20221046
    [3] Wang Li-Peng, Jiang Xin-Biao, Wu Hong-Chun, Fan Hui-Qing. Ab initio calculation of the thermal neutron scattering cross sections of uranium mononitride. Acta Physica Sinica, 2018, 67(20): 202801. doi: 10.7498/aps.67.20180834
    [4] Gao Tan-Hua, Wu Shun-Qing, Zhang Peng, Zhu Zi-Zhong. Structural and electronic properties of hydrogenated bilayer boron nitride. Acta Physica Sinica, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [5] Yuan Jian-Mei, Mao Yu-Liang. Density functional study on hydrogenation and non-hydrogenation graphene nanoribbon. Acta Physica Sinica, 2011, 60(10): 103103. doi: 10.7498/aps.60.103103
    [6] Guo Li-Qiang, Ding Jian-Ning, Yang Ji-Chang, Wang Shu-Bo, Ye Feng, Cheng Guang-Gui, Ling Zhi-Yong, Fan Hui-Juan, Yuan Ning-Yi, Wang Xiu-Qin. Photo-absorption coefficient approximation of hydrogenated silicon films. Acta Physica Sinica, 2010, 59(11): 8184-8190. doi: 10.7498/aps.59.8184
    [7] Li Shi-Bin, Wu Zhi-Ming, Yuan Kai, Liao Nai-Man, Li Wei, Jiang Ya-Dong. Study on thermal conductivity of hydrogenated amorphous silicon films. Acta Physica Sinica, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [8] Li Shi-Bin, Wu Zhi-Ming, Li Wei, Yu Jun-Sheng, Jiang Ya-Dong, Liao Nai-Man. Study on crystallization mechanism of hydrogenated silicon film. Acta Physica Sinica, 2008, 57(11): 7114-7118. doi: 10.7498/aps.57.7114
    [9] Du Xiao-Ming, Wu Er-Dong, Dong Bao-Zhong, Wu Zhong-Hua, Yuan Xue-Zhong. Microscopic defects in Ti-Mo alloy hydrides studied by small-angle X-ray scattering. Acta Physica Sinica, 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [10] ZHU MEI-FANG. TRANSPORT IN HYDROGENATED AMORPHOUS SILICON AT LOW TEMPERATURES. Acta Physica Sinica, 1996, 45(3): 499-505. doi: 10.7498/aps.45.499
    [11] SHEN HAO, CHENG HUAN-SHENG, TANG JIA-YONG, YANG FU-JIA. THE STUDY OF NON-RUTHERFORD BACKSCATTERING OF 4He FROM CARSON. Acta Physica Sinica, 1994, 43(10): 1569-1575. doi: 10.7498/aps.43.1569
    [12] CHEN GUANG-HUA, YU GONG, ZHANG FANG-QING, WU TIAN-XI. SPIN DEFECT STATES IN HYDROGENATED AMORPHOUS GERMANIUM-CARBON FILMS. Acta Physica Sinica, 1992, 41(10): 1700-1705. doi: 10.7498/aps.41.1700
    [13] BAO XI-MAO, HUANG XIN-FAN, XING KUN-SHAN. TEMPERATURE FIELD CONTROL MODEL OF LASER CRYSTALLIZATION OF HYDROGENATED AMORPHOUS Si. Acta Physica Sinica, 1987, 36(1): 74-77. doi: 10.7498/aps.36.74
    [14] DAI GUO-CAI, GUAN DA-REN, DENG CONG-HAO. A COMPLEX MODEL FOR THE HYDROGENATED VACANCY IN CRYSTALLINE SILICON. Acta Physica Sinica, 1986, 35(6): 709-715. doi: 10.7498/aps.35.709
    [15] RUAN JING-HUI, CHEN GUI-YING, ZHANG NAN-NING. TEMPERATURE EFFECTS OF OPTICAL PHONON FOR ZrH1.7 AND PdH0.7. Acta Physica Sinica, 1986, 35(3): 389-392. doi: 10.7498/aps.35.389
    [16] CAO MING-ZHONG, WANG FU-TUAN, WANG GEN-SHI, SONG DE-YING, CHEN GUI-YING, RUAN JING-HUI. THERMAL NEUTRON INELASTIC SCATTERING SPECTRA OF LaNi4.5Mn0.5Hx. Acta Physica Sinica, 1985, 34(5): 689-693. doi: 10.7498/aps.34.689
    [17] RUAN JING-HUI, CHENG ZHI-XU, CHEN GUI-YING. INELASTIC SCATTERING SPECTRA OF THERMAL NEUTRONS BY ALUMINIUM HYDRIDE (AlH3)n. Acta Physica Sinica, 1981, 30(4): 538-541. doi: 10.7498/aps.30.538
    [18] CHEN GUI-YING, CHENG ZHI-XU, WU XIAN-NAN, RUAN JING-HUI. THERMAL NEUTRON INELASTIC SCATTERING OF PALLADIUM HYDRIDES (PdHx). Acta Physica Sinica, 1980, 29(2): 257-259. doi: 10.7498/aps.29.257
    [19] . Acta Physica Sinica, 1975, 24(3): 210-214. doi: 10.7498/aps.24.210
    [20] . Acta Physica Sinica, 1937, 3(1): 20-26. doi: 10.7498/aps.3.20
Metrics
  • Abstract views:  468
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2025
  • Accepted Date:  20 August 2025
  • Available Online:  24 September 2025
  • Published Online:  20 November 2025
  • /

    返回文章
    返回