-
This work presents a Rydberg-atom-based Loran-C receiver designed to overcome long-standing limitations of conventional systems, including low sensitivity and bulky form factors. In the proposed design, a reference electrode couples the low-frequency Loran-C signal into an atomic vapor cell equipped with integrated parallel plates; an auxiliary DC bias field is applied to optimize this coupling. By leveraging electromagnetically induced transparency (EIT) in conjunction with the Stark effect, the receiver enables direct, high-sensitivity measurement of the electric field's amplitude and phase. An FPGA-based acquisition stage and a MATLAB signal-processing pipeline were implemented to perform ground-wave/sky-wave discrimination, time-difference-of-arrival (TDOA) estimation, position fixing, and timing recovery. Experimental results confirm that the Rydberg-atom-based receiver successfully provides both positioning and timing capabilities. These findings demonstrate that Rydberg-atom sensors can significantly enhance the sensitivity and dynamic range of Loran-C systems at low frequencies, thereby establishing a quantum-sensing pathway toward next-generation, high-reliability navigation and timing architectures.
-
Keywords:
- Rydberg atoms /
- Stark effect /
- EIT /
- Loran-C signals
-
[1] Johnson G W, Swaszek P F, Hartnett R J, Shalaev R, Wiggins M, Ieee 2007 IEEE Conference on Technologies for Homeland Security-Enhancing Critical Infrastructure Dependability Woburn, MA, May 16-17 p95-+
[2] Johnson G, Shalaev R, Hartnett R, Swaszek P, Narins N 2005 IEEE Aerosp. Electron. Syst. Mag. 20 3
[3] Johnson G W, Dykstra K, Oates C, Swaszek P F, Hartnett R, Ion 2007 2007 National Technical Meeting of the Institute-of-Navigation San Diego, CA, Jan 22-24 p1201-1211
[4] Narkus-Kramer M, Scales W, Calle E, Ieee 2009 IEEE/AIAA 28th Digital Avionics Systems Conference Orlando, FL, Oct 23-29 p1008-1013
[5] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
[6] Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001 5
[7] Fan H Q, Kumar S, Sedlacek J, Kübler H, Karimkashi S, Shaffer J P 2015 J. Phys. B-At. Mol. Opt. Phys. 48 202001 16
[8] Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M, Jia S T 2017 Phys. Rev. Appl. 8 014028 7
[9] Cloutman M, Chilcott M, Elliott A, Otto J S, Deb A B, Kjaergaard N 2024 Phys. Rev. Appl. 24 044025 6
[10] Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030 5
[11] Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853
[12] Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101 4
[13] Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975
[14] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001 5
[15] Prajapti N, Artusio-Glimpse A, Simons M, Berweger S, Rotunno A, Jayaseelan M, Campbell K, Holloway C, Ieee 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) Greece, Jun 04-10
[16] Mao R Q, Lin Y, Fu Y Q, Ma Y M, Yang K 2024 IEEE Trans. Antennas Propag. 72 2025
[17] Wu B, Zhou Y L, Ding Z K, Mao R Q, Qian S X, Wan Z Q, Liu Y, An Q, Lin Y, Fu Y Q 2024 EPJ Quantum Technol. 11 30 17
[18] Grimmel J, Mack M, Karlewski F, Jessen F, Reinschmidt M, Sándor N, Fortágh J 2015 New J. Phys. 17 053005 8
[19] Li L, Jiao Y C, Hu J L, Li H Q, Shi M, Zhao J M, Jia S T 2023 Opt. Express 31 29228
[20] Lei M W, Shi M 2024 Opt. Lett. 49 5547
[21] Xie Y P, Lei M W, Zhang J Q, Dong W B, Shi M 2025 Electronics 14 1041 12
Metrics
- Abstract views: 14
- PDF Downloads: 0
- Cited By: 0









下载: