-
GeSn alloy, as a novel silicon-based optoelectronic material, demonstrates significant application potential in the field of infrared photonics due to its tunable bandgap properties and compatibility with silicon-based CMOS processes. Although the experimental performance of GeSn lasers under low-temperature conditions has been preliminarily validated, the optimization and practical application of this device still face challenges such as insufficient understanding of material properties. This paper addresses issues such as the unclear carrier dynamics mechanisms in GeSn alloy applications in infrared photonics. A theoretical model incorporating band parameters, non-equilibrium carrier transport, and radiative recombination have been proposed to systematically investigate the mechanism by which thermal excitation and phonon-assisted processes influence the direct-band spontaneous emission in GeSn alloys under variable temperature conditions. Results indicate that the carrier transfer process between the ΓCBM and LCBM energy bands of GeSn alloys exhibits significant composition dependence: for low-Sn-content GeSn alloys with Sn content below 10%, temperature-induced LCBM→ΓCBM electron transfer dominates, leading to an increase in direct band emission efficiency with rising temperature; whereas in high-Sn-content GeSn alloys with Sn content between 10% and 20%, the ΓCBM→LCBM electron escape process is more pronounced, resulting in a decrease in direct band emission efficiency with rising temperature. A modified Arrhenius modeling of the carrier dynamics competition further indicates that thermal excitation and phonon scattering synergistically regulate electron transfer between ΓCBM and LCBM. Analysis based on the modified Arrhenius model further demonstrates that both thermal excitation and phonon-assisted processes promote the injection and escape of electrons in the ΓCBM valley, serving as key factors in modulating the radiative recombination efficiency at the direct bandgap of GeSn alloys. The red shift of the peak position in the spontaneous emission spectrum of GeSn alloys primarily originates from the bandgap contraction effect; simultaneously, phonon-assisted processes reduce the dispersion of carrier energy distributions, leading to a pronounced narrowing effect in the direct band emission spectrum. Quantitative findings further elucidate the mechanism by which thermal excitation and phonon-assisted processes influence direct bandgap luminescence in GeSn alloys, offering theoretical guidance for performance regulation in infrared optoelectronic devices.
-
Keywords:
- GeSn alloys /
- Thermal excitation /
- Phonon assisted /
- Direct band emission
-
[1] Chang G E, Yu S Q, Liu J, Cheng H H, Soref R A, Sun G 2022 IEEE J. Sel. Topics Quantum Electron. 28 1
[2] Giunto A, Morral A F I 2024 Appl. Phys. Rev. 11 41333
[3] An S, Park H, Kim M 2023 J. Mater. Chem. C 11 2430
[4] Miao Y, Wang G, Kong Z, Xu B, Zhao X, Luo X, Lin H, Dong Y, Lu B, Dong L, Zhou J, Liu J, Radamson H H 2021 Nanomaterials 11 2556
[5] Reboud V, Gassenq A, Pauc N, Aubin J, Milord L, Thai Q M, Bertrand M, Guilloy K, Rouchon D, Rothman J, Zabel T, Armand P F, Sigg H, Chelnokov A, Hartmann J M, Calvo V 2017 Appl. Phys. Lett. 111 92101
[6] Ghosh S, Bansal R, Sun G, Soref R A, Cheng H H, Chang G E 2022 Sens. 22 3978
[7] Huang Y P, Wu B R, Ghosh S, Jheng Y T, Ho Y L, Wu Y J, Wisessint A, Kim M, Chang G E 2024 Opt. Express 32 39560
[8] Qian L, Fan W J, Tan C S, Zhang D H 2017 Opt. Mater. Express 7 800
[9] Liu J F 2014 Photonics 1 162
[10] Sun X, Liu J, Kimerling L C, Michel J 2009 Appl. Phys. Lett. 95 011911
[11] Du W, Ghetmiri S A, Conley B R, Mosleh A, Nazzal A, Soref R A, Sun G, Tolle J, Margetis J, Naseem H A, Yu S Q 2014 Appl. Phys. Lett. 105 51104
[12] Huang S H, Zheng Q Q, Xie W M, Lin J Y, Huang W, Li C, Qi D F 2018 J. Phys.: Condens. Matter 30 465701
[13] Ryu M Y, Harris T R, Yeo Y K, Beeler R T, Kouvetakis J 2013 Appl. Phys. Lett. 102 171908
[14] Julsgaard B, Von D, Tidemand L P, Pedersen C, Ikonic Z, Buca D 2020 Photonics Res. 8 788
[15] Menéndez J, Poweleit C D, Tilton S E 2020 Phys. Rev. B 101 195204
[16] Wu S, Huang S, Qian J, Huang W, Lin G, Cheng S, Li C 2025 J. Phys. D: Appl. Phys. 58 135308
[17] Viña L, Logothetidis S, Cardona M 1984 Phys. Rev. B 30 1979
[18] Bertrand M, Thai Q, Chrétien J, Pauc N, Aubin J, Milord L, Gassenq A, Hartmann J, Chelnokov A, Calvo V, Reboud V 2019 Annalen der Physik 531 1800396
[19] Hong H, Zhang L, Qian K, An Y, Li C, Li J, Chen S, Huang W, Wang J, Zhang S 2021 Opt. Express 29 441
[20] Huang S H, Li J P, Li H L, Lu X X, Sun Q Q, Xie D 2025 Acta Phys. Sin. 74 36101 (in Chinese) [黄诗浩, 李佳鹏, 李海林, 卢旭星, 孙钦钦, 谢灯 2025 物理学报 74 36101]
[21] Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 36202 (in Chinese) [黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩 2012 物理学报 61 36202]
[22] Chuang S L 2009 Physics of photonic devices 2nd ed (Hoboken, N.J: John Wiley & Sons) p347
[23] Wirths S, Geiger R, Von Den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88
[24] Ghosh S, Sun G, Yu S Q, Chang G E 2025 IEEE J. Select. Topics Quantum Electron. 31 1
[25] Huang B J, Chang C Y, Hsieh Y D, Soref R A, Sun G, Cheng H H, Chang G E 2019 ACS Photonics 6 1931
[26] Huang Q, Liu X, Zheng J, Yang Y, Zhang D, Pang Y, Cui J, Liu Z, Zuo Y, Cheng B 2023 J. Lumin. 255 119623
[27] Fang Y, Wang L, Sun Q, Lu T, Deng Z, Ma Z, Jiang Y, Jia H, Wang W, Zhou J, Chen H 2015 Sci. Rep. 5 12718
Metrics
- Abstract views: 9
- PDF Downloads: 0
- Cited By: 0









下载: