-
By using non-equilibrium Greens function method, we investigate the transmission rate of acoustic phonon and thermal conductance through a parallel multi-terminal graphene junctions, the relationship between the thermal-transport property in each terminal and the number of quantum terminals, the relationship between the thermal-transport property in each terminal and the relative position of quantum terminals in quantum structure, and also study the thermaltransport property in each terminal and the rough degree of edge structure. The results show that when the graphene chains (dimer lines) across the ribbon width are fixed, the increase of the number of the parallel multi-terminal graphene junctions can reduce the transmission rate of the phonons and the thermal conductance of each output terminal as well. This is because the increase of the number of the graphene junctions can lead to the decrease of the transverse dimension of the each output terminal, which enlarges the strength of the phonon scattering and results in the reduction of the phonon transmission. Owing to long distance scattering, the transmission rate of the phonons of the furthest distant output terminal is the smallest, and also the thermal conductance of the furthest output terminal is the smallest. On the contrary, the strength of the phonon scattering is the weakest for the closest output terminal. So the transmission rate of the phonons is the biggest, which induces the thermal conductance to be the biggest. The thermal conductance of the middle-output terminal depends sensitively on the structural parameters of each terminal. This is because mainly the relative position between the middle-output terminal and the phonon-input terminal is related closely to the structural parameters of each terminal, which can influence the strength of the phonon scattering and the transmission rate of the phonons. However, the thermal conductances in the top and bottom output terminals are just sensitively dependent on the structural parameters of the respective output terminal. This is because the relative position between the top (or bottom) output terminal and the phonon-input terminal is only related to the structural parameters of the respective output terminal. The rough edge structure can reduce obviously the transmission rate of the phonons, and the thermal conductance of the closest output terminal as well. The rough edge structure can modulate slightly the transmission rate of the phonons and the thermal conductance of the other output terminal. The total thermal conductance is related closely to the number of total graphene chains, the number of the multi-terminal graphene junctions, and the rough degree of edge structure. These results shed new light on the understanding of the thermal transport behaviors of multi-terminal junction quantum devices based on graphene-based nanomaterials in practical application.
-
Keywords:
- nonequilibrium Green's functions /
- acoustic phonon transport /
- thermal conductance /
- quantum system
[1] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X S, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213
[2] Liu Y Y, Zhou W X, Tang L M, Chen K Q 2014 Appl. Phys. Lett. 105 203111
[3] Basko D 2011 Science 334 610
[4] Prasher R 2010 Nature 328 185
[5] Yao H F, Xie Y E, Ouyang T, Chen Y P 2013 Acta Phys. Sin. 62 068102 (in Chinese) [姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 物理学报 62 068102]
[6] Sun Q F, Yang P, Guo H 2002 Phys. Rev. Lett. 89 175901
[7] Peng X F, Chen K Q 2015 Sci. Rep. 5 16215
[8] Tan S H, Tang L M, Chen K Q 2014 Phys. Lett. A 378 1952
[9] Liu Y Y, Zhou W X, Tang L M, Chen K Q 2013 Appl. Phys. Lett. 103 263118
[10] Chen K Q, Li W X, Duan W, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422
[11] Zhang G, Zhang H 2011 Nanoscale 3 4604
[12] Wang J S 2007 Phys. Rev. Lett. 99 160601
[13] Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381
[14] Ping Y, Qing F S, Hong G, Bambi H 2007 Phys. Rev. B 75 235319
[15] Hua Y C, Cao B Y 2015 2015 Acta Phys. Sin. 64 146501 (in Chinese) [华钰超, 曹炳阳 2015 物理学报 64 146501]
[16] Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 物理学报 64 186302]
[17] Zheng B Y, Dong H L, Chen F F 2014 Acta Phys. Sin. 63 076501 (in Chinese) [郑伯昱, 董慧龙, 陈非凡 2014 物理学报 63 076501]
[18] Yao W J, Cao B Y 2014 Chin. Sci. Bull. 27 3495
[19] Peng X F, Wang X J, Gong Z Q, Chen K Q 2011 Appl. Phys. Lett. 99 233105
[20] Bai K K, Zhou Y, Zheng H 2014 Phys. Rev. Lett. 113 086102
[21] Ouyang F P, Xu H, Li M J 2008 Acta Phys. Chim. Sin. 24 328 (in Chinese) [欧阳方平, 徐慧, 李明君 2008 物理化学学报 24 328]
[22] Xu Y, Chen X, Gu B L, Duan W 2009 Appl. Phys. Lett. 95 233116
[23] Xu Y, Chen X, Wang J S, Gu B L, Duan W 2010 Phys. Rev. B 81 195425
[24] Peng X F, Wang X J, Chen L Q, Chen K Q 2012 Europhys. Lett. 98 56001
[25] Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412
[26] Ouyang T, Chen Y, Xie Y 2010 Phys. Rev. B 82 245403
[27] Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107
[28] Zheng H, Liu H J, Tan X J, Lv H Y, Pan L, Shi J, Tang X F 2012 Appl. Phys. Lett. 100 093104
[29] Huang W, Wang J S, Liang G 2011 Phys. Rev. B 84 045410
[30] Hu J, Wang Y, Vallabhaneni A, Ruan X, Chen Y P 2011 Phys. Rev. B 99 113101
[31] Ouyang T, Chen Y, Xie Y, Stocks G M, Zhong J 2011 Appl. Phys. Lett. 99 233101
[32] Sevinli H, Cuniberti G 2010 Phys. Rev. B 81 113401
[33] Tan S H, Tang L M, Xie Z X, Pan C N, Chen K Q 2013 Carbon 65 181
[34] Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302
[35] Peng X F, Chen K Q 2014 Carbon 77 360
[36] Ouyang T, Chen Y P, Yang K K, Zhong J X 2009 Europhys. Lett. 88 28002
[37] Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209
[38] Chen J, Zhang G, Li B 2013 Nanoscale 5 532
[39] Chen J, Walther J H, Koumoutsakos P 2014 Nano Lett. 14 819
[40] Peng X F, Xiong C, Wang X J, Chen L Q, Luo Y F, Li J B 2013 Computational Materials Science 77 440
[41] Pan C N, Xie Z X, Tang L M, Chen K Q 2012 Appl. Phys. Lett. 101 103115
[42] Xu Y, Li Z, Duan W 2014 Small 11 2182
[43] Zhu J L, Dai Z S, Hu X 2003 Phys. Rev. B 68 45324
[44] Xia J B, Li S S 2003 Phys. Rev. B 68 75310
-
[1] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X S, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213
[2] Liu Y Y, Zhou W X, Tang L M, Chen K Q 2014 Appl. Phys. Lett. 105 203111
[3] Basko D 2011 Science 334 610
[4] Prasher R 2010 Nature 328 185
[5] Yao H F, Xie Y E, Ouyang T, Chen Y P 2013 Acta Phys. Sin. 62 068102 (in Chinese) [姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 物理学报 62 068102]
[6] Sun Q F, Yang P, Guo H 2002 Phys. Rev. Lett. 89 175901
[7] Peng X F, Chen K Q 2015 Sci. Rep. 5 16215
[8] Tan S H, Tang L M, Chen K Q 2014 Phys. Lett. A 378 1952
[9] Liu Y Y, Zhou W X, Tang L M, Chen K Q 2013 Appl. Phys. Lett. 103 263118
[10] Chen K Q, Li W X, Duan W, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422
[11] Zhang G, Zhang H 2011 Nanoscale 3 4604
[12] Wang J S 2007 Phys. Rev. Lett. 99 160601
[13] Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381
[14] Ping Y, Qing F S, Hong G, Bambi H 2007 Phys. Rev. B 75 235319
[15] Hua Y C, Cao B Y 2015 2015 Acta Phys. Sin. 64 146501 (in Chinese) [华钰超, 曹炳阳 2015 物理学报 64 146501]
[16] Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 物理学报 64 186302]
[17] Zheng B Y, Dong H L, Chen F F 2014 Acta Phys. Sin. 63 076501 (in Chinese) [郑伯昱, 董慧龙, 陈非凡 2014 物理学报 63 076501]
[18] Yao W J, Cao B Y 2014 Chin. Sci. Bull. 27 3495
[19] Peng X F, Wang X J, Gong Z Q, Chen K Q 2011 Appl. Phys. Lett. 99 233105
[20] Bai K K, Zhou Y, Zheng H 2014 Phys. Rev. Lett. 113 086102
[21] Ouyang F P, Xu H, Li M J 2008 Acta Phys. Chim. Sin. 24 328 (in Chinese) [欧阳方平, 徐慧, 李明君 2008 物理化学学报 24 328]
[22] Xu Y, Chen X, Gu B L, Duan W 2009 Appl. Phys. Lett. 95 233116
[23] Xu Y, Chen X, Wang J S, Gu B L, Duan W 2010 Phys. Rev. B 81 195425
[24] Peng X F, Wang X J, Chen L Q, Chen K Q 2012 Europhys. Lett. 98 56001
[25] Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412
[26] Ouyang T, Chen Y, Xie Y 2010 Phys. Rev. B 82 245403
[27] Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107
[28] Zheng H, Liu H J, Tan X J, Lv H Y, Pan L, Shi J, Tang X F 2012 Appl. Phys. Lett. 100 093104
[29] Huang W, Wang J S, Liang G 2011 Phys. Rev. B 84 045410
[30] Hu J, Wang Y, Vallabhaneni A, Ruan X, Chen Y P 2011 Phys. Rev. B 99 113101
[31] Ouyang T, Chen Y, Xie Y, Stocks G M, Zhong J 2011 Appl. Phys. Lett. 99 233101
[32] Sevinli H, Cuniberti G 2010 Phys. Rev. B 81 113401
[33] Tan S H, Tang L M, Xie Z X, Pan C N, Chen K Q 2013 Carbon 65 181
[34] Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302
[35] Peng X F, Chen K Q 2014 Carbon 77 360
[36] Ouyang T, Chen Y P, Yang K K, Zhong J X 2009 Europhys. Lett. 88 28002
[37] Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209
[38] Chen J, Zhang G, Li B 2013 Nanoscale 5 532
[39] Chen J, Walther J H, Koumoutsakos P 2014 Nano Lett. 14 819
[40] Peng X F, Xiong C, Wang X J, Chen L Q, Luo Y F, Li J B 2013 Computational Materials Science 77 440
[41] Pan C N, Xie Z X, Tang L M, Chen K Q 2012 Appl. Phys. Lett. 101 103115
[42] Xu Y, Li Z, Duan W 2014 Small 11 2182
[43] Zhu J L, Dai Z S, Hu X 2003 Phys. Rev. B 68 45324
[44] Xia J B, Li S S 2003 Phys. Rev. B 68 75310
Catalog
Metrics
- Abstract views: 5822
- PDF Downloads: 225
- Cited By: 0