搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两端线型双量子点分子Aharonov-Bohm干涉仪电输运

白继元 贺泽龙 李立 韩桂华 张彬林 姜平晖 樊玉环

引用本文:
Citation:

两端线型双量子点分子Aharonov-Bohm干涉仪电输运

白继元, 贺泽龙, 李立, 韩桂华, 张彬林, 姜平晖, 樊玉环

Electron transport through a two-terminal Aharonov-Bohm interferometer coupled with linear di-quantum dot molecules

Bai Ji-Yuan, He Ze-Long, Li Li, Han Gui-Hua, Zhang Bin-Lin, Jiang Ping-Hui, Fan Yu-Huan
PDF
导出引用
  • 设计一个两端线型双量子点分子Aharonov-Bohm (A-B)干涉仪. 采用非平衡格林函数技术, 理论研究无含时外场作用下的体系电导和引入含时外场作用下的体系平均电流. 在不考虑含时外场时, 调节点间耦合强度或磁通可以诱导电导共振峰劈裂. 控制穿过A-B干涉仪磁通的有无, 实现了共振峰电导数值在0与1之间的数字转换, 为制造量子开关提供了一个新的物理方案. 同时借助磁通和Rashba自旋轨道相互作用, 获得了自旋过滤. 当体系引入含时外场时, 平均电流曲线展示了旁带效应. 改变含时外场的振幅, 实现了体系平均电流的大小与位置的有效控制, 而调节含时外场的频率, 则可以实现平均电流峰与谷之间的可逆转换. 通过调节磁通与Rashba自旋轨道相互作用, 与自旋相关的平均电流亦得到有效控制. 研究结果为开发利用耦合多量子点链嵌入A-B 干涉仪体系电输运性质提供了新的认知. 上述结果可望对未来的量子器件设计与量子计算发挥重要的指导作用.
    A two-terminal Aharonov-Bohm (A-B) interferometer coupled with linear di-quantum dot molecules is presented. By employing Keldysh non-equilibrium Green's function technique, the conductance without introducing time-dependent external field and the average current with applying time-dependent external field are theoretically studied. In the absence of time-dependent external field, two identical linear diquantum dot molecules embedded respectively in the two arms of A-B interferometer lead to degeneracy energy levels. The central resonance peak at εd = 0 in the conductance spectrum splits into two resonance peaks as the inter-coupling strength of di-quamtum dot increases over a threshold. In the case that the two linear di-quantum dot molecules are different, three or four resonance peaks appear in the conductance spectrum. When tuning magnetic flux ψ= π, the destructive quantum interference of electron waves in the A-B interferometer takes place. The conversion between 0 and 1 for conductance is performed by switching on/off the magnetic flux, which suggests a new physical scheme of quantum switches. The effect of Rashba spin-orbit interaction on the conductance is discussed. The functionality of spin filter is suggested through adjusting the Rashba spin-orbit coupling strength and the external magnetic flux. When time-dependent external field is applied, the notable side-band effect appears in the average current curve. A series of resonance peaks is produced, with the peak-peak separation of ħω. Two main peaks become reduced as the amplitude of time-dependent external field increases, however, the sideband peaks grow gradually. This indicates that both the magnitude and the position of average current resonance peak are controllable by adjusting the amplitude of time-dependent external field. The sideband effect remains always in the average current curve no matter how much the frequency of time-dependent external field changes. But the increase in the frequency of external field leads to the growth of two main peaks at the bonding and anti-bonding energy respectively, and the decay of the corresponding sideband peaks as well. The conversion between the current peak and valley can be realized by tuning the frequency of time-dependent field. Moreover, the dependence of A-B effect of the average current on the magnetic flux is found. As the magnetic flux is ψ≠nπ, each peak in average current curves splits into two peaks. But under the condition of ψ=2nπ, the splitting phenomenon disappears. The spin-dependent average current shows effective controllability by tuning the magnetic flux and Rashba spin-orbit coupling. The results would be useful for gaining a physical insight into electron transport in the multi-quantum-dot molecules coupled A-B interferometer and for designing the quantum devices.
    • 基金项目: 国家自然科学基金(批准号: 11447132)、教育部111引智基地项目(批准号: B13015)、教育部重点实验室计划和高等学校基本科研业务费资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11447132), the 111 Project to Harbin Engineering University of the Ministry of Education of China (Grant No. B13015), the Key Laboratory Program of the Ministry of Education of China, and the Fundamental Research Funds for the Central Universities, China
    [1]

    Ladrón de Guevara M L, Claro F, Orellana P A 2003 Phys. Rev. B 67 195335

    [2]

    Sun Q, Guo H, Wang J 2003 Phys. Rev. Lett. 90 258301

    [3]

    Fang M, Sun L L 2008 Chin. Phys. Lett. 25 3389

    [4]

    Chi F, Yuan X, Zheng J 2008 Nanoscale Res. Lett. 3 343

    [5]

    Xue H J, L T Q, Zhang H C, Yin H T, Cui L, He Z L 2011 Chin. Phys. B 20 027301

    [6]

    Zhao H K, Zhao L L 2011 Eur. Phys. J. B 79 485

    [7]

    Zhao H K, Wang J, Wang Q 2012 EPL 99 48005

    [8]

    Gong W J, Zheng Y S, Liu Y, Kariuki F N, L T Q 2008 Phys. Lett. A 372 2934

    [9]

    Chen X W, Shi Z G, Chen B J, Song K H 2008 Acta Phys. Sin. 57 2426 (in Chinese) [谌雄文, 施振刚, 谌宝菊, 宋克慧 2008 物理学报 57 2426]

    [10]

    Barański J, Domański T 2012 Phys. Rev. B 85 205451

    [11]

    He Z L, Bai J Y, Li P, L T Q 2014 Acta Phys. Sin. 63 227304 (in Chinese) [贺泽龙, 白继元, 李鹏, 吕天全 2014 物理学报 63 227304]

    [12]

    Wang Q, Xie H Q, Jiao H J, Li Z J, Nie Y H 2012 Chin. Phys. B 21 117310

    [13]

    Chi F, Zheng J 2008 Superlattices 43 375

    [14]

    Du S F, Sun Q F, Lin T H 2000 Commun. Theor. Phys. 33 185

    [15]

    Zhao L L, Zhao H K, Wang J 2012 Phys. Lett. A 376 1849

    [16]

    Yang Z C, Sun Q F, Xie X C 2014 J. Phys. Condens. Matter 26 045302

    [17]

    Shang R N, Li H O, Cao G, Xiao M, Tu T, Jiang H W, Guo G C, Guo G P 2013 Appl. Phys. Lett. 103 162109

    [18]

    An X T, Mu H Y, Li Y X, Liu J J 2011 Phys. Lett. A 375 4078

    [19]

    Sokolovshi D 1988 Phys. Rev. B 37 4201

    [20]

    Kouwenhoven L P, Jauhar S, Orenstein J, McEuen P L, Nagamune Y, Motohisa J, Sakaki H 1994 Phys. Rev. Lett. 73 3443

    [21]

    Tang H Z, An X T, Wang A K, Liu J J 2014 J. Appl. Phys. 116 063708

    [22]

    Sun Q F, Lin T H 1997 Phys. Rev. B 56 3591

    [23]

    Chen K W, Chang C R 2008 Phys. Rev. B 78 235319

    [24]

    Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310

    [25]

    Jauho A P, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528

    [26]

    Wingreen N S, Jauho A P, Meir Y 1993 Phys. Rev. B 48 8487

  • [1]

    Ladrón de Guevara M L, Claro F, Orellana P A 2003 Phys. Rev. B 67 195335

    [2]

    Sun Q, Guo H, Wang J 2003 Phys. Rev. Lett. 90 258301

    [3]

    Fang M, Sun L L 2008 Chin. Phys. Lett. 25 3389

    [4]

    Chi F, Yuan X, Zheng J 2008 Nanoscale Res. Lett. 3 343

    [5]

    Xue H J, L T Q, Zhang H C, Yin H T, Cui L, He Z L 2011 Chin. Phys. B 20 027301

    [6]

    Zhao H K, Zhao L L 2011 Eur. Phys. J. B 79 485

    [7]

    Zhao H K, Wang J, Wang Q 2012 EPL 99 48005

    [8]

    Gong W J, Zheng Y S, Liu Y, Kariuki F N, L T Q 2008 Phys. Lett. A 372 2934

    [9]

    Chen X W, Shi Z G, Chen B J, Song K H 2008 Acta Phys. Sin. 57 2426 (in Chinese) [谌雄文, 施振刚, 谌宝菊, 宋克慧 2008 物理学报 57 2426]

    [10]

    Barański J, Domański T 2012 Phys. Rev. B 85 205451

    [11]

    He Z L, Bai J Y, Li P, L T Q 2014 Acta Phys. Sin. 63 227304 (in Chinese) [贺泽龙, 白继元, 李鹏, 吕天全 2014 物理学报 63 227304]

    [12]

    Wang Q, Xie H Q, Jiao H J, Li Z J, Nie Y H 2012 Chin. Phys. B 21 117310

    [13]

    Chi F, Zheng J 2008 Superlattices 43 375

    [14]

    Du S F, Sun Q F, Lin T H 2000 Commun. Theor. Phys. 33 185

    [15]

    Zhao L L, Zhao H K, Wang J 2012 Phys. Lett. A 376 1849

    [16]

    Yang Z C, Sun Q F, Xie X C 2014 J. Phys. Condens. Matter 26 045302

    [17]

    Shang R N, Li H O, Cao G, Xiao M, Tu T, Jiang H W, Guo G C, Guo G P 2013 Appl. Phys. Lett. 103 162109

    [18]

    An X T, Mu H Y, Li Y X, Liu J J 2011 Phys. Lett. A 375 4078

    [19]

    Sokolovshi D 1988 Phys. Rev. B 37 4201

    [20]

    Kouwenhoven L P, Jauhar S, Orenstein J, McEuen P L, Nagamune Y, Motohisa J, Sakaki H 1994 Phys. Rev. Lett. 73 3443

    [21]

    Tang H Z, An X T, Wang A K, Liu J J 2014 J. Appl. Phys. 116 063708

    [22]

    Sun Q F, Lin T H 1997 Phys. Rev. B 56 3591

    [23]

    Chen K W, Chang C R 2008 Phys. Rev. B 78 235319

    [24]

    Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310

    [25]

    Jauho A P, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528

    [26]

    Wingreen N S, Jauho A P, Meir Y 1993 Phys. Rev. B 48 8487

  • [1] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运. 物理学报, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [2] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [3] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究. 物理学报, 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [4] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江. 聚噻吩单链量子热输运的第一性原理研究. 物理学报, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [5] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究. 物理学报, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [6] 李睿. 准一维半导体量子点中电偶极自旋共振的物理机理. 物理学报, 2015, 64(16): 167303. doi: 10.7498/aps.64.167303
    [7] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用. 物理学报, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [8] 安兴涛, 刁淑萌. 门电压控制的硅烯量子线中电子输运性质. 物理学报, 2014, 63(18): 187304. doi: 10.7498/aps.63.187304
    [9] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运. 物理学报, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [10] 贺泽龙, 白继元, 李鹏, 吕天全. T型双量子点分子Aharonov-Bohm干涉仪的电输运. 物理学报, 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [11] 安兴涛, 穆惠英, 咸立芬, 刘建军. 量子点双链中电子自旋极化输运性质. 物理学报, 2012, 61(15): 157201. doi: 10.7498/aps.61.157201
    [12] 栗军, 刘玉, 平婧, 叶银, 李新奇. 双量子点Aharonov-Bohm干涉系统输运性质的大偏离分析. 物理学报, 2012, 61(13): 137202. doi: 10.7498/aps.61.137202
    [13] 丁磊, 王聪, 褚立华, 纳元元, 闫君. 反钙钛矿Mn3AX化合物的晶格、磁性和电输运性质的研究进展. 物理学报, 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [14] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [15] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响. 物理学报, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [16] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析. 物理学报, 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [17] 尹永琦, 李华, 马佳宁, 贺泽龙, 王选章. 多端耦合量子点分子桥的量子输运特性研究. 物理学报, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [18] 蔡承宇, 周旺民. Ge/Si半导体量子点的应变分布与平衡形态. 物理学报, 2007, 56(8): 4841-4846. doi: 10.7498/aps.56.4841
    [19] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究. 物理学报, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [20] 熊昌民, 孙继荣, 王登京, 沈保根. 厚度与应变效应对La0.67Ca0.33MnO3薄膜电输运与居里温度的影响. 物理学报, 2004, 53(11): 3909-3915. doi: 10.7498/aps.53.3909
计量
  • 文章访问数:  3930
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-16
  • 修回日期:  2015-06-18
  • 刊出日期:  2015-10-05

/

返回文章
返回