-
Plasmonic solar water splitting is based on the composite electrode incorporating plasmonic metal nanoparticles on semiconductor, where the localized heating generated by relaxation of the metal's localized surface plasmon resonance (LSPR) under light excitation enhances hydrogen production efficiency. To optimize composite photoanodes for photoelectrochemical water splitting system, this study employs non-equilibrium molecular dynamics simulations to calculate the interfacial thermal conductivity between plasmonic metals (Cu, Ag, Au) and semiconductors (TiO2, ZnO, MoS2) across varying temperatures. The relationship between interfacial thermal conductivity and phonons of different frequencies was investigated via vibrational density of states which was calculated from the velocity autocorrelation functions and subsequent phonon participation ratio. The results indicate that the interfacial thermal conductivity across all composite electrode configurations enhance with the increase of temperature. When paired with TiO2, the thermal transport performances in Cu-TiO2 and Ag-TiO2 are superior to that of Au-TiO2, and the interfacial thermal conductivity of Cu-TiO2 reaches 973.56 MW m-2·K-1 at 800 K. With Au as the fixed plasmonic component, Au-ZnO demonstrates the higher interfacial thermal conductivity over Au-MoS2 and Au-TiO2, showing 324.44 MW m-2 K-1 at 800 K. Based on the obtained interfacial thermal conductivities of different composite photoanodes, Cu-ZnO is predicted as optimal composite, but its interfacial thermal conductivity of 547.69 MW m-2 K-1 at 800 K ranks second only to Cu-TiO2. The analysis of vibrational density of states and phonon participation ratio reveal the low-frequency region (0-10 THz) as dominant for thermal transport, with both interfaces exhibiting the high phonon participation ratio range of 0.7-0.8. However, Cu-TiO2 possesses significantly higher vibrational density of states than Cu-ZnO within this critical band. Although Cu-ZnO shows higher phonon participation ratio range in the high-frequency range, its lower overall interfacial thermal conductivity is attributed to the minimal contribution of high-frequency phonons to interfacial thermal conductance. The findings provide optimization strategies based on interfacial thermal transport mechanisms for constructing efficient photoanodes for solar water splitting.
-
Keywords:
- phonon thermal transport /
- molecular dynamics /
- plasmonic metals /
- composite photoelectrodes
-
[1] Cavigli L, Milanesi A, Khlebtsov B N, Centi S, Ratto F, Khlebtsov N G, Pini R 2020 J. Colloid Interface Sci. 578 358
[2] Czelej K, Colmenares J C, Jabłczyńska K, Ćwieka K, Werner Ł, Gradoń L 2021 Catal. Today 380 156
[3] Ghosh U, Pal A, Pal T 2022 Adv. Mater. Interfaces 9 2200465
[4] Lou Y B, Zhang Y K, Cheng L, Chen J X, Zhao Y X 2018 ChemSusChem 11 1505
[5] Liu L D, Zhang H F, Xing S, Zhang Y, Li S G, Wei C, Peng F, Liu X Y 2023 Adv. Sci. 10 2207342
[6] Sang L X, Wang C, Zhao Y, Ren Z Y 2023 J. Phys. Chem. C 127 14666
[7] Zhao W R, Ai Z Y, Dai J S, Zhang M 2014 PLoS ONE 9 e103671
[8] Zhai H S, Liu X L, Wang Z Y, Liu Y Y, Zheng Z K, Qin X Y, Zhang X Y, Wang P, Huang B B 2020 Chinese J. Catal. 41 1613
[9] Li Y Y, Wu S, Zheng J W, Peng Y K, Prabhakaran D, Taylor R A, Tsang S C E 2020 Mater. Today 41 34
[10] Sang L X, Ma M N 2023 Chem. J. Chinese U. 44 20220768 (in Chinese) [桑丽霞, 马梦楠. 2023 高等学校化学学报 44 20220768]
[11] Sang L X, Li Z K 2024 Acta Phys. Sin. 73 103 [桑丽霞, 李志康. 2024 物理学报 73 103]
[12] Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605
[13] Kunthakudee N, Puangpetch T, Ramakul P, Serivalsatit K, Hunsom M 2022 Int. J. Hydrogen Energ. 47 23570
[14] Meng H, Maruyama S G, Xiang R, Yang N 2021 Int. J. Heat Mass Tran. 180 121773
[15] Lu Z X, Wang Y, Ruan X L 2016 Phys. Rev. B 93 064302
[16] Majumdar A, Reddy P 2004 Appl. Phys. Lett. 84 4768
[17] Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401 (in Chinese) [宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023物理学报 72 034401]
[18] Giri A, Gaskins J T, Donovan B F, Szwejkowski C, Warzoha R J, Rodriguez M A, Ihlefeld J, Hopkins P E 2015 J. Appl. Phys. 117 105105
[19] Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857
[20] Wu X, Han Q 2021 ACS Appl. Mater. Interfaces 13 32564
[21] Loh G C, Teo E H T, Tay B K 2012 Diam. Relat. Mater. 23 88
[22] Robert S, Leonid Z, Pamela N 2007 Int. J. Heat Mass Tran. 50 3977
[23] Samy M, Konstantinos T 2012 Phys. Rev. B 86 094303
[24] Tang Z Y, Wang X X, He C Y, Li J, Chen M X, Tang C, Ouyang T 2024 Phys. Rev. B 110 134320
[25] Li Z D, Han L W, Ouyang T, Cao J X, Yao Y S, Wei X L 2025 Phys. Rev. Mater. 9 033804
[26] Liu Y, Wu W H, Yang S X, Yang P 2022 Surf. Interfaces 28 101640
[27] Wang W D, Pi Z L, Lei F, Lu Y 2016 AIP Adv. 6 035111
[28] Steve Plimpton 1995 J. Comput. Phys 117 1
[29] Zong Z C, Deng S C, Qin Y J, Wan X, Zhan J H, Ma D K, Yang N 2023 Nanoscale 15 16472
[30] Lin G, Jiang L, Ji P F 2023 Phys. Chem. Chem. Phys. 25 19853
[31] Liu X J, Zhang G, Zhang Y W 2016 Nano Res. 9 2372
[32] Namsani S, Singh J K 2018 J. Phys. Chem. C 122 2113
[33] Pei Q X, Guo J Y, Suwardi A, Zhang G 2023 J. Phys. Chem. C 127 19796
[34] Sheng Y F, Hu Y, Fan Z Y, Bao H 2022 Phys. Rev. B 105 075301
[35] Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302 (in Chinese) [刘东静, 王韶铭, 杨平 2021物理学报 70 187302]
[36] Lu C C, Li Z H, Li S C, Li Z, Zhang Y Y, Zhao J H, Wei N 2023 Carbon 213 118250
[37] Zhou H B, Zhang G 2018 Chin. Phys. B 27 034401
Metrics
- Abstract views: 53
- PDF Downloads: 0
- Cited By: 0