Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of hydrogen bond on molecular structure and charge transport characteristic of polypropylene composites

LI Lili HAN Shuang WANG Yulong LIU Tongjiang LI Yuzhe GAO Junguo

Citation:

Effect of hydrogen bond on molecular structure and charge transport characteristic of polypropylene composites

LI Lili, HAN Shuang, WANG Yulong, LIU Tongjiang, LI Yuzhe, GAO Junguo
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Simulating molecular structures and dynamic behaviors offers critical insights into the microscopic mechanisms governing variations in charge transport properties. In this work, molecular dynamics (MD) simulations integrated with the Compass II force field and molecular modeling (including geometry optimization, annealing, and dynamic equilibration) were systematically conducted to analyze intermolecular interaction energy, free volume distribution, electronic density of states (DOS), charge differential density, and trap energy levels. This comprehensive approach aims to unravel the regulatory role of hydrogen bonds in the structural evolution and charge transport dynamics of polypropylene (PP)/polyvinylidene fluoride (PVDF) composite systems. A quantitative framework was further established to correlate hydrogen bond density with key material performance metrics, such as free volume fraction, bandgap energy, and trap energy depth. This elucidates the hydrogen bond-mediated modulation of molecular architecture and charge transport behavior in PP/PVDF composites. Simulation results reveal a pronounced dependence of hydrogen bond formation on MA grafting content. At an MA mass fraction of 36.22wt.%, the hydrogen bond count reaches a maximum of 20, coinciding with a peak intermolecular interaction energy of 2171.63kcal·mol-1 and a minimized free volume fraction of 16.03%, indicative of a highly compact molecular packing structure and further increasing the MA content to 52.97wt.% induces a notable reduction in the composite’s bandgap to 3.13eV (minimum) and a concurrent deepening of trap energy levels to 3.06eV (maximum). Spatial charge differential density analysis demonstrates enhanced electron density localization near hydrogen-bonded regions, suppressing electron escape probability by over 40% compared to non-bonded domains. These findings collectively highlight a dual mechanism: hydrogen bonds not only reconfigure the molecular topology but also reshape localized charge distribution, directly impeding carrier mobility and altering charge transport pathways. The findings establish a robust structure-property relationship, demonstrating that hydrogen bond engineering serves as a pivotal strategy to tailor dielectric performance in polymer composites. By optimizing hydrogen bond density, the trade-off between structural compactness and electronic confinement can be strategically balanced, enabling the design of PP-based dielectrics with low carbon footprints and superior insulating properties. This mechanistic understanding provides actionable guidelines for advancing high-performance insulating materials in energy storage systems, aerospace components, and next-generation electrical devices, where precise control over charge transport is paramount.
  • [1]

    Li H, Gadinski M R, Huang Y Q 2020 ENERG ENVIRON SCI 13 1279

    [2]

    Tan D Q 2020 Adv. Funct. Mater. 30 1808567

    [3]

    Pablo A R, Baltus C B, Sebastião V C, Sílvia H P 2024 CHEM ENG SCI 298 120319

    [4]

    Yin J X, Wang Q H 2024 Acta Phys. Sin. 73 157401 (in Chinese) [殷嘉鑫,王强华 2024 物理学报 73 157401]

    [5]

    Luo B, Li J L, Wang S J, Hu S X, Xu Y S, Xiao W, Xu G Y, He J L, Li Q 2024 Proceedings of the CSEE 44 3371 (in Chinese) [罗兵,李君洛,王少杰,胡世勋,徐永生,肖微,徐刚毅,何金良,李琦 2024 中国电机工程学报 44 3371]

    [6]

    Fan L Z, Li Q, Yuan H, Huang S S, He J L 2022 Proceedings of the CSEE 45 4227 (in Chinese) [樊林禛,李琦,袁浩,黄上师,何金良 2022 中国电机工程学报 42 4227]

    [7]

    Ohuk L, Kim D, Kim H, Seong H L, Taehoon K, Kwon I, Keisuke S, Masayuki H, Jin H L, Dae H L, Kim M H, Masahiro K, Yu S G 2025 COMPOS SCI TECHNOL 259 110939

    [8]

    Hu S, Zhou Y, Yuan C, Wang W, Hu J 2020 High Voltage 5 249

    [9]

    Fan L Z, Hao G H, Zhang W J, Dong X H, Tu Y P, Hu S X, Shao Q, Zheng Z, Wang W, Yuan H, Li Q, He J L 2023 Proceedings of the CSEE 45 5251 (in Chinese) [樊林禛,郝国辉,张雯嘉,董新华,屠幼萍,胡世勋,邵清,郑重,王伟,袁浩,李琦,何金良 2023 中国电机工程学报 45 5251]

    [10]

    Li L, Wang X, Sun W F, Lei Q Q 2013 Acta Phys. Sin. 62 106201 (in Chinese) [李琳,王暄,孙伟峰,雷清泉 2013 物理学报 62 106201]

    [11]

    Li L L, Zhang X H, Wang Y L 2017 Acta Phys. Sin. 66 316 (in Chinese) [李丽丽,张晓虹,王玉龙 2017 物理学报 66 087201]

    [12]

    Ulian G, Moro D, Valdrè G 2018 Micro Nano Lett. 13 4

    [13]

    Duan X H, Wah H S, Martin G, John L, He J L 2020 High Voltage 5 397

    [14]

    Etcheverry M, Barbosa S E 2012 Materials 5 1084

    [15]

    Kang J W, Choi K, John W H, Hu S L 1998 Polymer 39 7079

    [16]

    Pang X, Zhu S J, Xu T L 2024 High Voltage Engineering 1 13 (in Chinese) [庞曦,朱思佳,许天蕾 2024 高电压技术 1 13]

    [17]

    Ma C, Min D M, Li S T, Zheng X, Li X Y, Min C, Zhan H Y 2017 Acta Phys. Sin. 66 067701 (in Chinese) [马超,闵道敏,李盛涛,郑旭,李西育,闵超,湛海涯 2017 物理学报 66 067701]

    [18]

    Xiao M, Zhang Z, Du B, Wang B, Cao J 2024 IEEE Trans. Appl. Supercond. 34 8

    [19]

    Zhang W J, Hu H X, Zhang Y R, Zhang Q, Wang M T, Li J 2023 IEEE Trans. Dielectr. Electr. Insul. 30 5

    [20]

    Peng X Y, Yao C, Yu X, Hu S X, Fan Y Z, He J L 2023 High Voltage Engineering 49 4480 (in Chinese) [彭向阳,姚驰,余欣,胡世勋,范亚洲,何金良 2023 高电压技术 49 4480]

    [21]

    Legnani C, Ventura A, Terzaghi C 2010 INT ORTHOP 34 465

    [22]

    Chen C, Li W Z 2009 Acta Phys. -Chim. Sin. 25 507 (in Chinese) [陈聪,李维仲 2009 物理化学学报 25 507]

    [23]

    Feng Y, Qu G H, Li S T 2024 High Voltage Engineering 50 2363 (in Chinese) [冯阳,渠广昊,李盛涛 2024 高电压技术 50 2363]

    [24]

    Ran Z Y, Luo Z, Li J L, Meng L, Liu Y H, Hu J 2024 IEEE 5th International Conference on Dielectrics France, August 2—6, 2024, p1241

    [25]

    Fan J Z, Fang Z B, Luo C J, Zhang H 2022 Acta Phys. Sin. 71 127103 (in Chinese) [樊金泽,方展伯,罗超杰,张汇 2022 物理学报 71 127103]

    [26]

    Li G C, Liu T Z, Gu Z L, Chen X L, Sun B B, Zhu Y W, Li S T, Wei Y H 2024 High Voltage 85 2397

    [27]

    Hong D K, Liu L, Guo X 2015 Proceedings of the CSEE 35 6099 (in Chinese) [洪迪昆,刘亮,郭欣 2015 中国电机工程学报 35 6099]

    [28]

    Li Q, Yao F Z, Liu Yang 2018 Annu. Rev. Mater. Res. 48 219

    [29]

    Gabriel P, Jacob P T, Mikhail I, Wu Z G, John W L 2025 J. Chem. Phys. 162 054709

    [30]

    Wang J, Wang J X, Zeng F G, Wu X L 2010 Acta Chim. Sin. 68 1653 (in Chinese) [王进,王军霞,曾凡桂,吴秀玲 2010 化学学报 68 1653]

    [31]

    Xiao M, Chen Y Y, Zhao Y S, Du B X 2024 High Voltage Engineering 50 2319 (in Chinese) [肖萌,陈毓妍,赵亦烁,杜伯学 2024 高电压技术 50 2319]

    [32]

    Le G C, Blaise G 2021 IEEE Trans. Appl. Supercond. 27 472

    [33]

    Li H, Ai D, Ren L, L 2019 Adv. Mater. 31 1900875

    [34]

    Zhou Y, Li Q, Dang B 2018 Adv. Mater. 30 1805672

    [35]

    Li S T, Xie D R, Min D M 2019 Proceedings of the CSEE 39 6122 (in Chinese) [李盛涛,谢东日,闵道敏 2019 中国电机工程学报 39 6122]

    [36]

    Wang J, David B A, Carlos A F, De L, Zhang D X, Alexander B, Aart W V, David S 2022 COMPOS PART A-APPL S 159 16993

    [37]

    Guo J H 2014 Simulation of Morphology and Dielectric Properties of Polyethylene /Montmorillonite Nano-composite (Harbin: Harbin University of Science and Technology) (in Chinese) [国家辉 2014 硕士学位论文 (哈尔滨:哈尔滨理工大学)]

  • [1] Sang Li-Xia, Li Zhi-Kang. Molecular dynamics simulation of thermal transport properties of phonons at interface of Au-TiO2 photoelectrode. Acta Physica Sinica, doi: 10.7498/aps.73.20240026
    [2] Yu Bao-Qing, Xia Bing, Yang Xiao-Yan, Wan Bao-Quan, Zha Jun-Wei. Electric field regulation of polypropylene insulation for high voltage DC cables. Acta Physica Sinica, doi: 10.7498/aps.72.20222320
    [3] Qin Xiao-Ling, Zhu Xu-Liang, Cao Jing-Wen, Wang Hao-Cheng, Zhang Peng. Investigation of hydrogen bond vibrations of ice. Acta Physica Sinica, doi: 10.7498/aps.70.20210013
    [4] Zhu Zhi, Yan Shao-Jian, Duan Tong-Chuan, Zhao Yan, Sun Ting-Yu, Li Yang-Mei. THz electromagnetic wave regulated dissolution of methane hydrate. Acta Physica Sinica, doi: 10.7498/aps.70.20211779
    [5] Zhang Ze-Cheng, Liu Zhen, Wang Meng-Ni, Zhang Fu-Jian, Zhang Zhong-Qiang. Reverse osmotic characteristics and mechanism of pillared graphene membranes for water desalination. Acta Physica Sinica, doi: 10.7498/aps.70.20201764
    [6] Duan Tong-Chuan, Yan Shao-Jian, Zhao Yan, Sun Ting-Yu, Li Yang-Mei, Zhu Zhi. Relationship between hydrogen bond network dynamics of water and its terahertz spectrum. Acta Physica Sinica, doi: 10.7498/aps.70.20211731
    [7] Yang Gang, Zheng Ting, Cheng Qi-Hao, Zhang Hui-Chen. Molecular dynamics simulation on shear thinning characteristics of non-Newtonian fluids. Acta Physica Sinica, doi: 10.7498/aps.70.20202116
    [8] Zhang Zhong-Qiang, Yu Fan-Shun, Liu Zhen, Zhang Fu-Jian, Cheng Guang-Gui. Reverse osmotic characteristics and mechanism of hydrogenated porous graphene. Acta Physica Sinica, doi: 10.7498/aps.69.20191761
    [9] Li Rui, Mi Jun-Xia. Influence of hydroxyls at interfaces on motion and friction of carbon nanotube by molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.66.046101
    [10] Ma Chao, Min Dao-Min, Li Sheng-Tao, Zheng Xu, Li Xi-Yu, Min Chao, Zhan Hai-Xia. Trap distribution and direct current breakdown characteristics in polypropylene/Al2O3 nanodielectrics. Acta Physica Sinica, doi: 10.7498/aps.66.067701
    [11] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, doi: 10.7498/aps.65.210301
    [12] Zhang Zhao-Hui, Han Kui, Cao Juan, Wang Fan, Yang Li-Juan. The influence of the structure of the organic ultra-film on friction. Acta Physica Sinica, doi: 10.7498/aps.61.028701
    [13] Chen Jun, Shi Lin, Wang Nan, Bi Sheng-Shan. The analysis of transport properties stability in molecular dynamics simulations. Acta Physica Sinica, doi: 10.7498/aps.60.126601
    [14] Ma Ying. Variable charge molecular dynamics simulation of vitreous silica. Acta Physica Sinica, doi: 10.7498/aps.60.026101
    [15] Chen Ming, Min Rui, Zhou Jun-Ming, Hu Hao, Lin Bo, Miao Ling, Jiang Jian-Jun. Molecular dynamic simulation of water molecules in carbon nanocapsule. Acta Physica Sinica, doi: 10.7498/aps.59.5148
    [16] Ma Ying, Chen Shang-Da, Xie Guo-Feng. Variable charge molecular dynamics simulations of the intergranular films in SiC. Acta Physica Sinica, doi: 10.7498/aps.58.7792
    [17] Zhang Zhao-Hui, Han Kui, Li Hai-Peng, Tang Gang, Wu Yu-Xi, Wang Hong-Tao, Bai Lei. Study of friction between hydrocarboxylic acid Langmuir-Blodgett films and its mechanism using molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.57.3160
    [18] Zhang Peng-Feng, Xia Zhong-Fu, Qiu Xun-Lin, Wang Fei-Peng, Wu Xian-Yong. Influence of charging parameters on piezoelectricity for cellular PP film electrets. Acta Physica Sinica, doi: 10.7498/aps.55.904
    [19] Wang Fei-Peng, Xia Zhong-Fu, Qiu Xiao-Min, Lü Hang, Qiu Xun-Lin, Shen Jun. Influence of pressure expanding treatment on electret properties of positively corona charged cellular PP films. Acta Physica Sinica, doi: 10.7498/aps.54.4400
    [20] Miao Jiang-Ping, Wu Zong-Han, Sun Cheng-Xiu, Sun Yue-Ming. The self-consistent theoretical study of the effect of surface plasmon and polariton on electronic transport. Acta Physica Sinica, doi: 10.7498/aps.53.2728
Metrics
  • Abstract views:  10
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  19 April 2025

/

返回文章
返回