Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reverse osmotic characteristics and mechanism of hydrogenated porous graphene

Zhang Zhong-Qiang Yu Fan-Shun Liu Zhen Zhang Fu-Jian Cheng Guang-Gui

Citation:

Reverse osmotic characteristics and mechanism of hydrogenated porous graphene

Zhang Zhong-Qiang, Yu Fan-Shun, Liu Zhen, Zhang Fu-Jian, Cheng Guang-Gui
PDF
HTML
Get Citation
  • Graphene-based materials have aroused great interest for their potential applications in water desalination and purification membranes attributed to their ultrathin thickness, high mechanical strength, and anti-foiling properties. Reverse osmosis (RO) technology is currently the most progressive, energy-saving and efficient separation technology by membranes, therefore the new materials with high strength, strong pollution resistance and excellent performance are urgently needed. The ability of porous graphene to serve as a kind of novel advanced RO membrane is due to two major potential strengths of this atomically thin two-dimensional material, i.e., ultrahigh permeability and super selectivity. Thus, the reverse osmotic properties of the porous graphene membranes should be further investigated theoretically. In this paper, classical molecular dynamics method is used to investigate the reverse osmosis characteristics of brine in hydrogenated porous graphene reverse osmosis membrane. The results show that the water permeation rate increases with the driving force, pore size and temperature increasing, for the pore diameter larger than the hydration radius. The ion rejection rate decreases with the driving force and temperature increasing. Interestingly, as the porous graphene moves in the tangential direction to perform a shearing process, the interception rate of the salt ions can be effectively improved and the concentration difference polarization phenomenon can be reduced with the tangential velocity increasing, although the water flux decreases slightly. The influence mechanism of each parameter on permeability and on water flux are explored by analyzing the hydrogen bond distribution, the ionic hydration in feed solution, and the energy barrier of the water molecules in penetrating process. In order to further evaluate the effects of various parameter changes on the benefits of reverse osmosis membranes, both the selectivity and permeability are calculated to evaluate the tradeoff between permeability and selectivity, indicating that the increase of the pore diameter can obtain both high permeability and selectivity under the shearing circumstance of the membrane. The research results in this paper will provide a theoretical understanding of porous graphene-based desalination membrane and also may be helpful in designing the shearing graphene-based water filtration devices.
      Corresponding author: Zhang Zhong-Qiang, zhangzq@ujs.edu.cn
    [1]

    Boretti A, Al-Zubaidy S, Vaclavikova M, Al-Abri M, Castelletto S, Mikhalovsky S 2018 npj Clean Water 1 1Google Scholar

    [2]

    Mehrdad M, Moosavi A 2019 Polymer 175 310Google Scholar

    [3]

    Kim J, Park K, Yang D R, Hong S 2019 Appl. Energy 254 113652Google Scholar

    [4]

    Greenlee L F, Lawler D F, Freeman B D, Marrot B, Moulin P 2009 Water Res. 43 2317Google Scholar

    [5]

    Cohen-Tanugi D, Grossman J C 2012 Nano Lett. 12 3602Google Scholar

    [6]

    Werber J R, Osuji C O, Elimelech M 2016 Nat. Rev. Mater. 1 1Google Scholar

    [7]

    Sun P, Wang K, Zhu H 2016 Adv. Mater. 28 2287Google Scholar

    [8]

    Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M 2015 Nat. Nanotechnol. 10 459Google Scholar

    [9]

    Xu P T, Yang J X, Wang K S, Zhou Z, Shen P W 2012 Sci. Bull. 57 2948Google Scholar

    [10]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [11]

    Azamat J 2016 Phys. Chem. Chem. Phys. C 120 23883Google Scholar

    [12]

    Azamat J, Khataee A, Joo S W 2015 Chem. Eng. Sci. 127 28Google Scholar

    [13]

    Yu T, Xu Z, Liu S, Liu H, Yang X 2018 J. Membr. Sci. 550 510Google Scholar

    [14]

    Wang Y, He Z, Gupta K M, Shi Q, Lu R 2017 Carbon 116 120Google Scholar

    [15]

    Li Y, Xu Z, Liu S, Zhang J, Yang X 2017 Comput. Mater. Sci. 139 65Google Scholar

    [16]

    Baker R W 2012 Membrane Technology and Applications (Vol. 3) (California Newark: John Wiley & Sons) pp15–96

    [17]

    Zhang Z Q, Zhang F J, Liu Z, Cheng G G, Wang X D, Ding J N 2018 Nanomaterials (Basel) 8 805Google Scholar

    [18]

    Xu Q, Zhang W 2016 Adv. Carbon Nanostruct. 28 6391Google Scholar

    [19]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Teresa H G 2004 J. Chem. Phys. 120 9665Google Scholar

    [20]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar

    [21]

    Xu H, Berne B J 2001 J. Phys. Chem. B 105 11929Google Scholar

    [22]

    Luzar A, Chandler D 1996 Phys. Rev. Lett. 76 928Google Scholar

    [23]

    Chen B, Ivanov I, Klein M L, Parrinello M 2003 Phys. Rev. Lett. 91 215503Google Scholar

    [24]

    Todorova T, Seitsonen A P, Hutter J, Kuo I F, Mundy C J 2006 J. Phys. Chem. B 110 3685Google Scholar

    [25]

    Zaidi S M J, Fadhillah F, Khan Z, Ismail A F 2015 Desalination 368 202Google Scholar

    [26]

    Zhang Z Q, Zhang H, Zheng Y, Wang L, Wang J 2008 Phys. Rev. B 78 035439Google Scholar

    [27]

    Xie M, Gray S R 2016 Sep. Purif. Technol. 167 6Google Scholar

    [28]

    Li T, Tu Q, Li S 2019 Desalination 451 182Google Scholar

    [29]

    张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁 2018 物理学报 67 056102Google Scholar

    Zhang Z Q, Li C, Liu H L, Ge D J, Cheng G G, Ding J N 2018 Acta Phys. Sin. 67 056102Google Scholar

    [30]

    Pendergast M M, Hoek E M V 2011 Energy Environ. Sci. 4 1946Google Scholar

  • 图 1  (a) 压力驱动作用下以氢化多孔石墨烯为反渗透膜的反渗透分子动力学模型图 (其中灰色球为反渗透膜中的碳原子, 中间的红色、白色、紫色、绿色球分别代表盐水中的氧原子、氢原子、钠离子、氯离子, 左侧棕色球是用来提供驱动压力的单层石墨烯, 右侧粉色球是单层石墨烯挡板); (b) 氢化多孔石墨烯反渗透膜模型示意图(其中白色和黄色球分别表示带相同电量正电荷和负电荷的氢原子和碳原子, 其余灰色碳原子不带电)

    Figure 1.  (a) Molecular dynamics model for pressure-driven reverse osmosis by a hydrogenated porous graphene. The dark gray particles are carbon atoms of grapheme. The red, white, purple, and green spheres represent the oxygen atoms, hydrogen atoms, sodium ions, and chloride ions in the brine, respectively. The monolayer graphene at the left side is used to provide driving pressure, while the one at the right side is rigid boundary to confine the solvent. (b) A hydrogenated porous graphene reverse osmosis membrane model. The white and yellow particles are hydrogen and carbon atoms with the same positive and negative charges, respec-tively.

    图 2  不同压力、温度、速度条件下孔径为1.2 nm的盐离子截留率和水通量的关系

    Figure 2.  Salt rejection versus water permeability for the porous grapheme with pore diameter of 1.2 nm under different pressure, temperature and shearing speed conditions.

    图 3  在盐水区距离石墨烯膜1 nm范围内盐离子占总盐离子的占比随速度的变化; (b) 当剪切速度为400 m/s时, 盐水区氢键和速度的z向分布

    Figure 3.  (a) Proportion ratio of salt ions in the brine zone to the total salt ion in the range of 1 nm of the membrane; (b) the z-directional distribution of hydrogen bonds (HB) and velocity in brine zone when the shearing speed is 400 m/s.

    图 4  盐水区平均每个水分子氢键数和端口水分子数及其氢键平均数的z向分布关系图 (a) 在不同剪切速度下; (b) 在不同温度下

    Figure 4.  The z-directional distribution relationship between the number of hydrogen bonds per water molecule and the number of port water molecules and their hydrogen bond average in the feed solution: (a) Different shearing speeds; (b) different temperatures.

    图 5  (a) 驱动力为200 MPa无剪切作用时, 水分子沿z轴方向转移的能障随温度的变化; (b) 驱动力为200 MPa时, 水分子沿z轴方向转移的能障随剪切速度的变化

    Figure 5.  (a) The PMF of water molecules along the z-axis at different temperatures for the membrane without shearing; (b) the PMF of water molecules along the z-axis for different shear speeds. The driving pressure in feed solution is 200 MPa.

    图 6  (a) 不同驱动压力下, 水分子和盐离子径向分布函数G(r); (b) 不同温度下, 水分子和盐离子径向分布函数G(r)

    Figure 6.  (a) Radial distribution function G(r) of water molecules and salt ions under different driving pressures; (b) radial distri-bution function G(r) of water molecules and salt ions at different temperatures.

    图 7  (a)不同温度和(b)不同剪切速度下的水合状态图, 其中包含第一水合层水分子平均数(黑色)、第一水合层水分子氢键平均数(红色)、第二水合层水分子平均数(蓝色)和第二水合层(紫色)水分子氢键平均数

    Figure 7.  (a) Hydration state diagram at different temperatures; (b) hydration state diagram at different shear velocities. Black square: The number of water molecules in first hydration shell. Red square: HB in first hydration shell. Blue square: The number of water molecules in second hydration shell. Purple square: HB in second hydration shell.

    图 8  (a) 不同驱动力、温度、速度条件下, 孔径为1.6 nm的氢化多孔石墨烯盐离子截留率和水通量的关系; (b) 在温度为298 K、剪切速度为0的条件下, 孔径为0.82 nm的不同驱动力的水通量

    Figure 8.  (a) Salt rejection versus water permeability for pore diameter of 1.6 nm under different conditions of pressure, temperature and speed; (b) water permeability as a function of driving pressure for the pore diameter of 0.82 nm at the temperature of 298 K and the shearing speed of 0.

    表 1  LJ势能参数

    Table 1.  LJ potential parameters.

    ElementsC (sp2)CCHHCHOwHwNa+Cl
    ε/kcal·mol–10.08590.0460.03010.1627500.16840117
    σ3.39972.9852.423.1643502.25895.1645
    q/e0–0.1150.115–1.04840.52521–1
    DownLoad: CSV

    表 2  孔径为1.2 nm下选择性和渗透性效益权衡

    Table 2.  Trade-offs between selectivity and permeability with pore diameter of 1.2 nm.

    τ = 200 MPa, v = 0T = 298 K, v = 0T = 298 K, τ = 200 MPa
    T/Kτ/MPav/m·s–1
    275298325350100150250300100200300400
    Q0.720.840.870.880.760.970.870.780.880.830.840.83
    DownLoad: CSV

    表 3  孔径为1.6 nm下选择性和渗透性效益权衡

    Table 3.  Trade-offs between selectivity and permeability with pore diameter of 1.6 nm.

    τ = 200 MPa, v = 0T = 298 K, v = 0T = 298 K, τ = 200 MPa
    T/Kτ/MPav/m·s–1
    275298325350100150250300100200300400
    Q0.650.730.700.690.960.850.660.610.630.650.600.60
    DownLoad: CSV
  • [1]

    Boretti A, Al-Zubaidy S, Vaclavikova M, Al-Abri M, Castelletto S, Mikhalovsky S 2018 npj Clean Water 1 1Google Scholar

    [2]

    Mehrdad M, Moosavi A 2019 Polymer 175 310Google Scholar

    [3]

    Kim J, Park K, Yang D R, Hong S 2019 Appl. Energy 254 113652Google Scholar

    [4]

    Greenlee L F, Lawler D F, Freeman B D, Marrot B, Moulin P 2009 Water Res. 43 2317Google Scholar

    [5]

    Cohen-Tanugi D, Grossman J C 2012 Nano Lett. 12 3602Google Scholar

    [6]

    Werber J R, Osuji C O, Elimelech M 2016 Nat. Rev. Mater. 1 1Google Scholar

    [7]

    Sun P, Wang K, Zhu H 2016 Adv. Mater. 28 2287Google Scholar

    [8]

    Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M 2015 Nat. Nanotechnol. 10 459Google Scholar

    [9]

    Xu P T, Yang J X, Wang K S, Zhou Z, Shen P W 2012 Sci. Bull. 57 2948Google Scholar

    [10]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [11]

    Azamat J 2016 Phys. Chem. Chem. Phys. C 120 23883Google Scholar

    [12]

    Azamat J, Khataee A, Joo S W 2015 Chem. Eng. Sci. 127 28Google Scholar

    [13]

    Yu T, Xu Z, Liu S, Liu H, Yang X 2018 J. Membr. Sci. 550 510Google Scholar

    [14]

    Wang Y, He Z, Gupta K M, Shi Q, Lu R 2017 Carbon 116 120Google Scholar

    [15]

    Li Y, Xu Z, Liu S, Zhang J, Yang X 2017 Comput. Mater. Sci. 139 65Google Scholar

    [16]

    Baker R W 2012 Membrane Technology and Applications (Vol. 3) (California Newark: John Wiley & Sons) pp15–96

    [17]

    Zhang Z Q, Zhang F J, Liu Z, Cheng G G, Wang X D, Ding J N 2018 Nanomaterials (Basel) 8 805Google Scholar

    [18]

    Xu Q, Zhang W 2016 Adv. Carbon Nanostruct. 28 6391Google Scholar

    [19]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Teresa H G 2004 J. Chem. Phys. 120 9665Google Scholar

    [20]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar

    [21]

    Xu H, Berne B J 2001 J. Phys. Chem. B 105 11929Google Scholar

    [22]

    Luzar A, Chandler D 1996 Phys. Rev. Lett. 76 928Google Scholar

    [23]

    Chen B, Ivanov I, Klein M L, Parrinello M 2003 Phys. Rev. Lett. 91 215503Google Scholar

    [24]

    Todorova T, Seitsonen A P, Hutter J, Kuo I F, Mundy C J 2006 J. Phys. Chem. B 110 3685Google Scholar

    [25]

    Zaidi S M J, Fadhillah F, Khan Z, Ismail A F 2015 Desalination 368 202Google Scholar

    [26]

    Zhang Z Q, Zhang H, Zheng Y, Wang L, Wang J 2008 Phys. Rev. B 78 035439Google Scholar

    [27]

    Xie M, Gray S R 2016 Sep. Purif. Technol. 167 6Google Scholar

    [28]

    Li T, Tu Q, Li S 2019 Desalination 451 182Google Scholar

    [29]

    张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁 2018 物理学报 67 056102Google Scholar

    Zhang Z Q, Li C, Liu H L, Ge D J, Cheng G G, Ding J N 2018 Acta Phys. Sin. 67 056102Google Scholar

    [30]

    Pendergast M M, Hoek E M V 2011 Energy Environ. Sci. 4 1946Google Scholar

  • [1] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] Wu Cheng-Wei, Ren Xue, Zhou Wu-Xing, Xie Guo-Feng. Theoretical study of anisotropy and ultra-low thermal conductance of porous graphene nanoribbons. Acta Physica Sinica, 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [3] Wang Meng-Ni, Liu Zhen, Gu Hao, Zhang Fu-Jian, Zhang Zhong-Qiang, Ding Jian-Ning. Temporal reverse osmotic salt filtration mechanism of multi-layered porous graphene. Acta Physica Sinica, 2022, 71(13): 138201. doi: 10.7498/aps.71.20212283
    [4] Qin Xiao-Ling, Zhu Xu-Liang, Cao Jing-Wen, Wang Hao-Cheng, Zhang Peng. Investigation of hydrogen bond vibrations of ice. Acta Physica Sinica, 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [5] Theoretical Study on Anisotropy and Ultra-low Thermal Conductance of Porous Graphene nanoribbons. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211477
    [6] Zhu Zhi, Yan Shao-Jian, Duan Tong-Chuan, Zhao Yan, Sun Ting-Yu, Li Yang-Mei. THz electromagnetic wave regulated dissolution of methane hydrate. Acta Physica Sinica, 2021, 70(24): 248705. doi: 10.7498/aps.70.20211779
    [7] Duan Tong-Chuan, Yan Shao-Jian, Zhao Yan, Sun Ting-Yu, Li Yang-Mei, Zhu Zhi. Relationship between hydrogen bond network dynamics of water and its terahertz spectrum. Acta Physica Sinica, 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [8] Yang Gang, Zheng Ting, Cheng Qi-Hao, Zhang Hui-Chen. Molecular dynamics simulation on shear thinning characteristics of non-Newtonian fluids. Acta Physica Sinica, 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [9] Zhang Ze-Cheng, Liu Zhen, Wang Meng-Ni, Zhang Fu-Jian, Zhang Zhong-Qiang. Reverse osmotic characteristics and mechanism of pillared graphene membranes for water desalination. Acta Physica Sinica, 2021, 70(9): 098201. doi: 10.7498/aps.70.20201764
    [10] Bai Qing-Shun, Dou Yu-Hao, He Xin, Zhang Ai-Min, Guo Yong-Bo. Deposition and growth mechanism of graphene on copper crystal surface based on molecular dynamics simulation. Acta Physica Sinica, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [11] Yuan Li-Hua, Gong Ji-Jun, Wang Dao-Bin, Zhang Cai-Rong, Zhang Mei-Ling, Su Jun-Yan, Kang Long. Hydrogen storage capacity of alkali metal atoms decorated porous graphene. Acta Physica Sinica, 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [12] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [13] Zhang Zhong-Qiang, Li Chong, Liu Han-Lun, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure. Acta Physica Sinica, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [14] Lan Sheng, Li Kun, Gao Xin-Yun. Based on the molecular dynamics characteristic research of heat conduction of graphyne nanoribbons with vacancy defects. Acta Physica Sinica, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [15] Li Rui, Mi Jun-Xia. Influence of hydroxyls at interfaces on motion and friction of carbon nanotube by molecular dynamics simulation. Acta Physica Sinica, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [16] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene. Acta Physica Sinica, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [17] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [18] Gu Fang, Zhang Jia-Hong, Yang Li-Juan, Gu Bin. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Physica Sinica, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [19] Chen Ming, Min Rui, Zhou Jun-Ming, Hu Hao, Lin Bo, Miao Ling, Jiang Jian-Jun. Molecular dynamic simulation of water molecules in carbon nanocapsule. Acta Physica Sinica, 2010, 59(7): 5148-5153. doi: 10.7498/aps.59.5148
    [20] Zhang Zhao-Hui, Han Kui, Li Hai-Peng, Tang Gang, Wu Yu-Xi, Wang Hong-Tao, Bai Lei. Study of friction between hydrocarboxylic acid Langmuir-Blodgett films and its mechanism using molecular dynamics simulation. Acta Physica Sinica, 2008, 57(5): 3160-3165. doi: 10.7498/aps.57.3160
Metrics
  • Abstract views:  7179
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  18 November 2019
  • Accepted Date:  18 February 2020
  • Published Online:  05 May 2020

/

返回文章
返回