-
Relaxor ferroelectric sodium bismuth titanate (Na0.5Bi0.5TiO3, NBT) exhibits outstanding ferroelectric characteristics and is widely recognized as a highly promising lead-free ferroelectric material. In order to further promote the application of such environmentally friendly ferroelectric materials, it is crucial to gain a comprehensive understanding of their structural evolution and phase transition mechanisms under high pressure. This study investigates the structural evolution of NBT under hydrostatic pressure up to 6.8 GPa by integrating in situ high-pressure neutron diffraction experiments with first-principles calculations. Based on high-pressure neutron diffraction experiments conducted at the China Mianyang Research Reactor (CMRR), Rietveld refinement analysis determined the phase transition from the ambient-pressure R3c phase to the high-pressure Pnma phase in NBT, with a coexistence pressure range of 1.1–4.6 GPa. The bulk modulus of the high-pressure phase Pnma was experimentally determined for the first time, with a value of 108.6 GPa. First-principles calculations further corroborated the thermodynamic tendency for the pressure-induced phase transition from R3c to Pnma and yielded a bulk modulus in close agreement with the experimental value. By correlating with the experimentally obtained trends of the internal [TiO6] oxygen octahedral structural changes under high pressure in both phases, this study demonstrates that the difference in their macroscopic compressibility originates from the significantly higher pressure sensitivity of the oxygen octahedral distortion degree in the R3c phase compared to the Pnma phase. This relatively softer internal microstructure results in a lower bulk modulus than that of the Pnma phase. By providing a detailed analysis of the pressure-induced phase transition and microstructural evolution, this study clarifies the relationship between the microscopic structural features of the high-pressure and ambient-pressure phases of NBT and their influence on macroscopic mechanical properties, thereby establishing a fundamental connection between microscopic structural responses and bulk physical behavior under high-pressure conditions. These findings provide crucial experimental data and theoretical support for further enhancing the high-pressure performance and applications of lead-free ferroelectric materials.
-
Keywords:
- Sodium Bismuth titanate /
- High-Pressure Neutron Diffraction /
- First-Principles Calculation /
- Phase Transition
-
[1] Leijtens T, Hoke E T, Grancini G, Slotcavage D J, Eperon G E, Ball J M, De Bastiani M, Bowring A R, Martino N, Wojciechowski K, McGehee M D, Snaith H J, Petrozza A 2015 Adv. Energy Mater. 5 1500962
[2] Takenaka T, Nagata H 2005 J. Eur. Ceram. Soc. 25 2693
[3] Mesrar M, Lamcharfi T, Echatoui N, Abdi F, Harrach A, Ahjyaje F Z 2019 Moroc. J. Quant. Qual. Res. 1 14
[4] Whittle K R, de los Reyes M, Aughterson R D, Blackford M G, Smith K L, Baldo P, Ryan E P, Zaluzec N J, Lumpkin G R 2018 Materialia 3 186
[5] Shkuratov S I, Baird J, Antipov V G, Talantsev E F, Chase J B, Hackenberger W, Luo J, Jo H R, Lynch C S 2017 Sci. Rep. 7 46758
[6] Shkuratov S I, Baird J, Antipov V G, Hackenberger W, Luo J, Zhang S J, Lynch C S, Chase J B, Jo H R, Roberts C C 2018 Appl. Phys. Lett. 112 122903
[7] Suchanicz J, Jankowska-Sumara I, Kruzina T V 2011 J. Electroceram. 27 45
[8] Mesrar M, Lamcharfi T, Echatoui N S, Abdi F 2022 Materialia 22 101404
[9] Panda P K 2009 J. Mater. Sci. 44 5049
[10] Smolenskii G A, Isupov V A, Agranovskaya A I, Krainik N N 1961 Phys. Solid State 2 2651
[11] Suchanicz J, Poleder K, Kania A, Handerek J 1988 Ferroelectrics 77 107
[12] Fleddermann C B, Nation J A 2002 IEEE Trans. Plasma Sci. 25 212
[13] Jiang Y, Wang X, Zhang F, He H 2014 Smart Mater. Struct. 23 085020
[14] Shkuratov S I, Baird J, Talantsev E F 2013 Appl. Phys. Lett. 102 052906
[15] Shkuratov S I, Talantsev E F, Baird J 2011 J. Appl. Phys. 110 024113
[16] Shkuratov S I, Baird J, Antipov V G, Lynch C S, Zhang S J, Chase J B, Jo H R 2021 J. Mater. Chem. A 9 12307
[17] Zhao D, Lenz T, Gelinck G H, Groen P, Damjanovic D, de Leeuw D M, Katsouras I 2019 Nat. Commun. 10 2547
[18] Gao Z P, Peng W, Chen B, Redfern S A T, Wang K, Chu B J, He Q, Sun Y, Chen X F, Nie H C, Deng W, Zhang L K, He H L, Wang G S, Dong X L 2019 Phys. Rev. Mater. 3 035401
[19] Orayech B, Faik A, López G A, Fabelo O, Igartua J M 2015 J. Appl. Crystallogr. 48 318
[20] Chang R C, Chu S Y, Lin Y F, Hong C S, Wong Y P 2007 J. Eur. Ceram. Soc. 27 4453
[21] Dwivedi S, Pareek T, Kumar S 2018 RSC Adv. 8 24286
[22] Ge W, Li J, Viehland D, Chang Y F, Messing G L 2011 Phys. Rev. B 83 224110
[23] Liu Y, Liu H, Sun S, Wang L, Chen J 2022 Scr. Mater. 207 114283
[24] Wang X L, Luo Y H, Huang H L, Chen M C, Su Z E, Liu C, Chen C, Li W, Fang Y Q, Jiang X, Zhang J, Li L, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 260502
[25] Borges Z V, Poffo C M, de Lima J C, Souza S M, Trichês D M, de Biasi R S 2018 J. Appl. Phys. 124 215901
[26] Jones G O, Thomas P A 2002 Acta Crystallogr. B 58 168
[27] Kreisel J, Bouvier P, Dkhil B, Thomas P A, Glazer A M, Welberry T R, Chaabane B, Mezouar M 2003 Phys. Rev. B 68 014113
[28] Kreisel J, Glazer A M, Bouvier P, Lucazeau G 2001 Phys. Rev. B 63 174106
[29] Bujakiewicz-Korońska R, Natanzon Y 2008 Phase Transit. 81 1117.
[30] Suchanicz J 2002 J. Mater. Sci. 37 489.
[31] Yang G Z, Xie L, Chen X P, He R Q, Han T X, Niu G L, Fang L M, He D W 2022 Acta Phys. Sin. 71 156101 (in Chinese) [杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威 2022 物理学报 71 156101]
[32] Shi Y, Chen X P, Xie L, Sun G A, Fang L M 2019 Acta Phys. Sin. 68 116101 (in Chinese) [史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣 2022 物理学报 68 116101]
[33] Sun J C, Chen X P, Xie L, Fang L M 2024 Chin. J. High Pressure Phys. 38 030111 (in Chinese) [孙嘉程, 陈喜平, 谢雷, 房雷鸣 2024 高压物理学报 38 030111]
[34] Fang L M, Cheng X P, Xie L, He D W, Hu Q W, Li X, Jiang M Q, Sun G A, Cheng B, Peng S M, Li H, Han T X 2020 Chin. J. High Pressure Phys. 34 050104 (in Chinese) [房雷鸣, 陈喜平, 谢雷, 贺端威, 胡启威, 李欣, 江明全, 孙光爱, 陈波, 彭述明, 李昊, 韩铁鑫 2020 高压物理学报 34 050104]
[35] Kandemir T, Wallacher D, Hansen T, Liss K D, Naumann d'Alnoncourt R, Schlögl R, Behrens M 2012 Nucl. Instrum. Methods Phys. Res. A 673 51
[36] Jacobsen M K, Ridley C J, Bocian A, Kirichek O, Manuel P, Khalyavin D, Azuma M, Attfield J P, Kamenev K V 2014 Rev. Sci. Instrum. 85 043904
[37] Xu H, Zhao Y, Zhang J, Hickmott D D, Daemen L L 2007 Phys. Chem. Miner. 34 223
[38] Zhou Z Y, Gao Z P, Xiong Z W, Liu G M, Zheng T, Shi Y J, Xiao M Z, Wu J G, Fang L M, Han T X, Liang H, He H L 2022 Appl. Phys. Lett. 121 113903
[39] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[42] Zhou Z Y, Xiong Z W, Liu X R, Zeng T, Liu W B, Wu J G, Gao Z P 2024 Phys. Rev. B 109 104108
[43] Chen H H, Peng F, Mao H K, Shen G Y, Liermann H P, Li Z, Shu J F 2010 J. Appl. Phys. 107 113503
[44] Gerward L, Olsen J S, Petit L, Vaitheeswaran G, Kanchana V, Svane A 2005 J. Alloys Compd. 400 56
[45] Singh P P, Kumar M 2004 Phys. B Condens. Matter 344 41.
[46] Voigt W 1889 Ann. Phys. Chem 274 573.
[47] Reuss A 1929 Zeit. Angew. Math. Mech 9 49.
[48] Hill R 1952 Proc. Phys. Soc. A 65 349.
[49] Chen M J, Guo J X, Wu H, Zheng X R, Ming N, Tian H, Li Q J, Dou S Y, Sheng L H 2025 Acta Phys. Sin. 74 177102 (in Chinese) [陈美娟, 郭佳芯, 吴浩, 郑潇然,闵楠,田辉,李全军,都时禹,沈龙海 2025 物理学报 74 177102]
[50] Yamanaka T, Nagai T, Okada T, Fukuda T 2005 Z. Kristallogr. - Cryst. Mater. 220 938.
[51] Robinson K, Gibbs G V, Ribbe P H 1971 Science 172 567.
[52] Zhou Z Y, Fang L M, Xiong Z W, Zhang Y J, Liu Y X, Liu G M, Liu Y, He R Q, Han T X, Li J, Wang K, Gao Z P 2023 Appl. Phys. Lett. 123 012904.
Metrics
- Abstract views: 36
- PDF Downloads: 2
- Cited By: 0