Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Asymmetric gear driven by Brownian particles with non-reciprocal interactions

WANG Yan LI Jiajian AI Baoquan

Citation:

Asymmetric gear driven by Brownian particles with non-reciprocal interactions

WANG Yan, LI Jiajian, AI Baoquan
cstr: 32037.14.aps.75.20251168
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this work, we use computer simulations to examine how an asymmetric gear can be driven by Brownian particles that interact in a non-reciprocal manner. Unlike many active matter systems, the particles are not self-propelled. Instead, the non-reciprocal interactions break action-reaction symmetry and produce a net force that drives the system out of equilibrium. The gear has an asymmetric shape, which helps select a preferred direction of rotation.We find that the rotation direction of the gear is influenced by both the asymmetry and parameters of system. When system parameters are identical, gears with two structures of opposite chirality exhibit equal magnitudes of average angular velocity, differing only in their rotational directions. For a specific gear, the rotation speed increases as the strength of the non-reciprocal interaction increases and shows non-monotonic dependence on temperature and particle density. Interestingly, under high density conditions, the rotation direction can reverse. At low temperatures, particle clusters form, resulting in reversed motion, whereas higher temperatures restore the rotation in the original direction.This work illustrates how non-reciprocal interactions can be used to generate directed motion in passive structures such as gears. It offers one possible approach to controlling motion in small-scale systems without external energy input, and may contribute to the design of simple nanoscale machines.
      Corresponding author: AI Baoquan, aibq@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075090, 12475036) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2024A1515012575).
    [1]

    Oster G 2002 Nature 417 25Google Scholar

    [2]

    Schweitzer F, Ebeling W, Tilch B 1998 Phys. Rev. Lett. 80 5044Google Scholar

    [3]

    Astumian R D 1997 Science 276 917Google Scholar

    [4]

    Rousselet J, Salome L, Ajdari A, Prost J 1994 Nature 370 446Google Scholar

    [5]

    Astumian R D, Hänggi P 2002 Phys. Today 55 33Google Scholar

    [6]

    Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387Google Scholar

    [7]

    Reimann P 2002 Phys. Rep. 361 57Google Scholar

    [8]

    Reichhardt C J O, Reichhardt C 2017 Annu. Rev. Condens. Matter Phys. 8 51Google Scholar

    [9]

    张顺欣, 王硕, 刘雪, 王新占, 刘富成, 贺亚峰 2025 物理学报 74 075202Google Scholar

    Zhang S X, Wang S, Liu X, Wang X Z, Liu F C, He Y F 2025 Acta Phys. Sin. 74 075202Google Scholar

    [10]

    Lou X, Yu N, Chen K, Zhou X, Podgornik R, Yang M C 2021 Chin. Phys. B 30 114702Google Scholar

    [11]

    Farkas Z, Tegzes P, Vukics A, Vicsek T 1999 Phys. Rev. E 60 7022Google Scholar

    [12]

    Wambaugh J F, Reichhardt C, Olson C J 2002 Phys. Rev. E 65 031308Google Scholar

    [13]

    Galajda P, Keymer J, Chaikin P, Austin R 2007 J. Bacteriol. 189 8704Google Scholar

    [14]

    Wan M B, Reichhardt C J O, Nussinov Z, Reichhardt C 2008 Phys. Rev. Lett. 101 018102Google Scholar

    [15]

    Angelani L, Di Leonardo R, Ruocco G 2009 Phys. Rev. Lett. 102 048104Google Scholar

    [16]

    Di Leonardo R, Angelani L, Dell'Arciprete D, Ruocco G, Iebba V, Schippa S, Conte M P, Mecarini F, De Angelis F, Di Fabrizio E 2010 Proc. Natl. Acad. Sci. U.S.A. 107 9541Google Scholar

    [17]

    Sokolov A, Apodaca M M, Grzybowski B A, Aranson I S 2010 Proc. Natl. Acad. Sci. U. S. A. 107 969Google Scholar

    [18]

    Kojima M, Miyamoto T, Nakajima M, Homma M, Arai T, Fukuda T 2015 Sens. Actuator B-Chem. 222 1220Google Scholar

    [19]

    Li H, Zhang H P 2013 EPL 102 50007Google Scholar

    [20]

    Reichhardt C, Ray D, Reichhardt C J O 2015 New J. Phys. 17 073034Google Scholar

    [21]

    Yang M C, Ripoll M 2014 Soft Matter 10 1006Google Scholar

    [22]

    Chaté H, Ginelli F, Grégoire G, Peruani F, Raynaud F 2008 Eur. Phys. J. B 64 451Google Scholar

    [23]

    Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323Google Scholar

    [24]

    Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M, Simha R A 2013 Rev. Mod. Phys. 85 1143Google Scholar

    [25]

    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G 2016 Rev. Mod. Phys. 88 45006Google Scholar

    [26]

    You Z H, Baskaran A, Marchetti M C 2020 Proc. Natl. Acad. Sci. U. S. A. 117 19767Google Scholar

    [27]

    Ivlev A V, Bartnick J, Heinen M, Du C R, Nosenko V, Löwen H 2015 Phys. Rev. X 5 011035Google Scholar

    [28]

    Mandal R, Jaramillo S S, Sollich P 2024 Phys. Rev. E 109 L062602Google Scholar

    [29]

    Benois A, Jardat M, Dahirel V, Démery V, Agudo-Canalejo J, Golestanian R, Illien P 2024 Phys. Rev. E 108 054606Google Scholar

    [30]

    Meredith C H, Moerman P G, Groenewold J, Chiu Y J, Kegel W K, van Blaaderen A, Zarzar L D 2020 Nat. Chem. 12 1136Google Scholar

    [31]

    Kreienkamp K L, Klapp S H L 2022 New J. Phys. 24 123009Google Scholar

    [32]

    Gupta R K, Kant R, Soni H, Sood A K, Ramaswamy S 2022 Phys. Rev. E 105 064602Google Scholar

    [33]

    Chiu Y J, Omar A K 2023 J. Chem. Phys. 158 164903Google Scholar

    [34]

    Pigolotti S, Benzi R 2014 Phys. Rev. Lett. 112 188102Google Scholar

    [35]

    Long R A, Azam F 2001 Appl. Environ. Microbiol. 67 4975Google Scholar

    [36]

    Xiong L Y, Cao Y S, Cooper R, Rappel W J, Hasty J, Tsimring L 2020 eLife 9 e48885Google Scholar

    [37]

    Yanni D, Márquez-Zacarías P, Yunker P J, Ratcliff W C 2019 Curr. Biol. 29 R545Google Scholar

    [38]

    Strandburg-Peshkin A, Twomey C R, Bode N W F, Kao A B, Katz Y, Ioannou C C, Rosenthal S B, Torney C J, Wu H S, Levin S A, Couzin I D 2013 Curr. Biol. 23 R709Google Scholar

    [39]

    Vicsek T, Zafeiris A 2012 Phys. Rep. 517 71Google Scholar

    [40]

    Helbing D, Molnár P 1995 Phys. Rev. E 51 4282Google Scholar

    [41]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487Google Scholar

    [42]

    Bain N, Bartolo D 2019 Science 363 46Google Scholar

    [43]

    Gardi G, Sitti M 2023 Phys. Rev. Lett. 131 058301Google Scholar

    [44]

    Ahmadi B, Mazurek P, Horodecki P, Barzanjeh S 2024 Phys. Rev. Lett. 132 210402Google Scholar

    [45]

    Cocconi L, Alston H, Bertrand T 2023 Phys. Rev. Research 5 043032Google Scholar

    [46]

    Jones J E 1924 Proc. R. Soc. A 106 463Google Scholar

    [47]

    Ai B Q 2023 Phys. Rev. E 108 064409Google Scholar

  • 图 1  粒子-齿轮模型示意图以及非互易相互作用示意图 (a) 在具有周期性边界条件的二维箱中, 由非互易粒子(红色和蓝色圆盘)驱动的齿轮示意图; (b) 粒子A与B在不同$ {\varDelta } $值下的成对非互易相互作用示意图

    Figure 1.  Schematic of the particle-gear model and illustration of non-reciprocal interactions: (a) Schematic of a gear driven by non-reciprocal particles (red disks or blue disks) in a two-dimensional box with periodic boundary conditions; (b) illustration of pairwise non-reciprocal interactions between particle A and B for different $ {\varDelta } $.

    图 2  齿轮平均角速度$ \omega $随非互易强度$ {\varDelta } $的变化关系 (a) 在温度$ T=1.0 $、填充分数$ \phi =0.1 $时两种手性相反的齿轮$ \omega $随$ {\varDelta } $的变化关系; (b) 齿轮的逆时针旋转机制图; (c) 反对称齿轮的顺时针旋转机制图

    Figure 2.  Dependence of the average angular velocity $ \omega $ on the non-reciprocal interaction strength $ {\varDelta } $: (a) The average angular velocity $ \omega $ as a function of the non-reciprocal interaction strength $ {\varDelta } $ for two chirally symmetric gears at $ T=1.0 $ and $ \phi =0.1 $; (b) mechanism of counterclockwise rotation in the gear; (c) mechanism of clockwise rotation in the antisymmetric gear.

    图 3  不同非互易强度$ {\varDelta } $下齿轮平均角速度$ \omega $随填充分数$ \phi $的变化关系 (a) 在温度$ T=1.0 $时, 不同$ {\varDelta } $下$ \omega $随$ \phi $的变化关系; (b) 在$ T=1.0 $, $ \phi =0.4 $, $ {\varDelta }=2.0 $条件下的模拟快照; (c) 密度诱导的齿轮顺时针旋转机制图

    Figure 3.  Dependence of the average angular velocity $ \omega $ on the packing fraction $ \phi $ for different non-reciprocal interaction strengths $ {\varDelta } $: (a) The average angular velocity $ \omega $ as a function of the packing fraction $ \phi $ for different $ {\varDelta } $ at $ T=1.0 $; (b) simulation snapshot at $ T=1.0 $, $ \phi =0.4 $ and $ {\varDelta }=2.0 $; (c) schematic of the density-induced clockwise rotation of the gear.

    图 4  在非互易强度$ {\varDelta }=2.0 $时, 不同温度下齿轮平均角速度$ \omega $随填充分数$ \phi $的变化关系 (a) T = 0.1—1.0; (b) T = 1.5—5.0

    Figure 4.  Dependence of the average angular velocity $ \omega $ on the packing fraction $ \phi $ for different temperature at $ {\varDelta }=2.0 $: (a) T = 0.1–1.0; (b) T = 1.5–5.0

    图 5  在非互易强度$ {\varDelta }=2.0 $时, 齿轮平均角速度$ \omega $随系统参数$ T $和$ \phi $变化的等高线图

    Figure 5.  Contour plots of the average angular velocity $ \omega $ as a function of the system parameters $ T $ and $ \phi $ at $ {\varDelta }=2.0 $

    图 6  不同非互易强度$ {\varDelta } $下齿轮平均角速度$ \omega $随温度$ T $的变化关系 (a) 在填充分数$ \phi =0.1 $时, 不同$ {\varDelta } $下$ \omega $随$ T $的变化关系; (b) 在$ T=0.1 $, $ \phi =0.1 $, $ {\varDelta }=2.0 $条件下的模拟快照

    Figure 6.  Dependence of the average angular velocity $ \omega $ on the temperature $ T $ for different non-reciprocal interaction strengths $ {\varDelta } $: (a) The average angular velocity $ \omega $ as a function of the temperature $ T $ for different $ {\varDelta } $ at $ \phi =0.1 $; (b) simulation snapshot at $ T=0.1 $ and $ {\varDelta }=2.0 $.

    表 1  不同填充分数对应的布朗粒子数

    Table 1.  Number of Brownian particles corresponding to different packing fractions.

    $ \phi $$ {N}_{\text{p}} $$ \phi $$ {N}_{\text{p}} $
    0.05360.35250
    0.10720.40286
    0.151080.45322
    0.201430.50358
    0.251790.55393
    0.302150.60429
    DownLoad: CSV
  • [1]

    Oster G 2002 Nature 417 25Google Scholar

    [2]

    Schweitzer F, Ebeling W, Tilch B 1998 Phys. Rev. Lett. 80 5044Google Scholar

    [3]

    Astumian R D 1997 Science 276 917Google Scholar

    [4]

    Rousselet J, Salome L, Ajdari A, Prost J 1994 Nature 370 446Google Scholar

    [5]

    Astumian R D, Hänggi P 2002 Phys. Today 55 33Google Scholar

    [6]

    Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387Google Scholar

    [7]

    Reimann P 2002 Phys. Rep. 361 57Google Scholar

    [8]

    Reichhardt C J O, Reichhardt C 2017 Annu. Rev. Condens. Matter Phys. 8 51Google Scholar

    [9]

    张顺欣, 王硕, 刘雪, 王新占, 刘富成, 贺亚峰 2025 物理学报 74 075202Google Scholar

    Zhang S X, Wang S, Liu X, Wang X Z, Liu F C, He Y F 2025 Acta Phys. Sin. 74 075202Google Scholar

    [10]

    Lou X, Yu N, Chen K, Zhou X, Podgornik R, Yang M C 2021 Chin. Phys. B 30 114702Google Scholar

    [11]

    Farkas Z, Tegzes P, Vukics A, Vicsek T 1999 Phys. Rev. E 60 7022Google Scholar

    [12]

    Wambaugh J F, Reichhardt C, Olson C J 2002 Phys. Rev. E 65 031308Google Scholar

    [13]

    Galajda P, Keymer J, Chaikin P, Austin R 2007 J. Bacteriol. 189 8704Google Scholar

    [14]

    Wan M B, Reichhardt C J O, Nussinov Z, Reichhardt C 2008 Phys. Rev. Lett. 101 018102Google Scholar

    [15]

    Angelani L, Di Leonardo R, Ruocco G 2009 Phys. Rev. Lett. 102 048104Google Scholar

    [16]

    Di Leonardo R, Angelani L, Dell'Arciprete D, Ruocco G, Iebba V, Schippa S, Conte M P, Mecarini F, De Angelis F, Di Fabrizio E 2010 Proc. Natl. Acad. Sci. U.S.A. 107 9541Google Scholar

    [17]

    Sokolov A, Apodaca M M, Grzybowski B A, Aranson I S 2010 Proc. Natl. Acad. Sci. U. S. A. 107 969Google Scholar

    [18]

    Kojima M, Miyamoto T, Nakajima M, Homma M, Arai T, Fukuda T 2015 Sens. Actuator B-Chem. 222 1220Google Scholar

    [19]

    Li H, Zhang H P 2013 EPL 102 50007Google Scholar

    [20]

    Reichhardt C, Ray D, Reichhardt C J O 2015 New J. Phys. 17 073034Google Scholar

    [21]

    Yang M C, Ripoll M 2014 Soft Matter 10 1006Google Scholar

    [22]

    Chaté H, Ginelli F, Grégoire G, Peruani F, Raynaud F 2008 Eur. Phys. J. B 64 451Google Scholar

    [23]

    Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323Google Scholar

    [24]

    Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M, Simha R A 2013 Rev. Mod. Phys. 85 1143Google Scholar

    [25]

    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G 2016 Rev. Mod. Phys. 88 45006Google Scholar

    [26]

    You Z H, Baskaran A, Marchetti M C 2020 Proc. Natl. Acad. Sci. U. S. A. 117 19767Google Scholar

    [27]

    Ivlev A V, Bartnick J, Heinen M, Du C R, Nosenko V, Löwen H 2015 Phys. Rev. X 5 011035Google Scholar

    [28]

    Mandal R, Jaramillo S S, Sollich P 2024 Phys. Rev. E 109 L062602Google Scholar

    [29]

    Benois A, Jardat M, Dahirel V, Démery V, Agudo-Canalejo J, Golestanian R, Illien P 2024 Phys. Rev. E 108 054606Google Scholar

    [30]

    Meredith C H, Moerman P G, Groenewold J, Chiu Y J, Kegel W K, van Blaaderen A, Zarzar L D 2020 Nat. Chem. 12 1136Google Scholar

    [31]

    Kreienkamp K L, Klapp S H L 2022 New J. Phys. 24 123009Google Scholar

    [32]

    Gupta R K, Kant R, Soni H, Sood A K, Ramaswamy S 2022 Phys. Rev. E 105 064602Google Scholar

    [33]

    Chiu Y J, Omar A K 2023 J. Chem. Phys. 158 164903Google Scholar

    [34]

    Pigolotti S, Benzi R 2014 Phys. Rev. Lett. 112 188102Google Scholar

    [35]

    Long R A, Azam F 2001 Appl. Environ. Microbiol. 67 4975Google Scholar

    [36]

    Xiong L Y, Cao Y S, Cooper R, Rappel W J, Hasty J, Tsimring L 2020 eLife 9 e48885Google Scholar

    [37]

    Yanni D, Márquez-Zacarías P, Yunker P J, Ratcliff W C 2019 Curr. Biol. 29 R545Google Scholar

    [38]

    Strandburg-Peshkin A, Twomey C R, Bode N W F, Kao A B, Katz Y, Ioannou C C, Rosenthal S B, Torney C J, Wu H S, Levin S A, Couzin I D 2013 Curr. Biol. 23 R709Google Scholar

    [39]

    Vicsek T, Zafeiris A 2012 Phys. Rep. 517 71Google Scholar

    [40]

    Helbing D, Molnár P 1995 Phys. Rev. E 51 4282Google Scholar

    [41]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487Google Scholar

    [42]

    Bain N, Bartolo D 2019 Science 363 46Google Scholar

    [43]

    Gardi G, Sitti M 2023 Phys. Rev. Lett. 131 058301Google Scholar

    [44]

    Ahmadi B, Mazurek P, Horodecki P, Barzanjeh S 2024 Phys. Rev. Lett. 132 210402Google Scholar

    [45]

    Cocconi L, Alston H, Bertrand T 2023 Phys. Rev. Research 5 043032Google Scholar

    [46]

    Jones J E 1924 Proc. R. Soc. A 106 463Google Scholar

    [47]

    Ai B Q 2023 Phys. Rev. E 108 064409Google Scholar

  • [1] CHEN Jianli, LI Jiajian, AI Baoquan. Cluster behavior and spontaneous velocity alignment of active Brownian particles with attractive interactions. Acta Physica Sinica, 2025, 74(6): 060501. doi: 10.7498/aps.74.20241746
    [2] FU Tianqi, SHEN Boyang, MA Xinran, HUANG Renzhong, FAN Liming, AI Baoquan, GAO Tianfu, ZHENG Zhigang. Directional transport of non-reciprocal coupled Brownian particles. Acta Physica Sinica, 2025, 74(17): 170501. doi: 10.7498/aps.74.20250689
    [3] Liu Yan-Yan, Sun Jia-Ming, Fan Li-Ming, Gao Tian-Fu, Zheng Zhi-Gang. Directional transport of two-dimensional coupled Brownian particles subjected to nonconserved forces. Acta Physica Sinica, 2023, 72(4): 040501. doi: 10.7498/aps.72.20221741
    [4] Liu Tian-Yu, Cao Jia-Hui, Liu Yan-Yan, Gao Tian-Fu, Zheng Zhi-Gang. Optimal control of temperature feedback control ratchets. Acta Physica Sinica, 2021, 70(19): 190501. doi: 10.7498/aps.70.20210517
    [5] Zhang Xu, Cao Jia-Hui, Ai Bao-Quan, Gao Tian-Fu, Zheng Zhi-Gang. Investigation on the directional transportation of coupled Brownian motors with asymmetric friction. Acta Physica Sinica, 2020, 69(10): 100503. doi: 10.7498/aps.69.20191961
    [6] Liu Chen-Hao, Liu Tian-Yu, Huang Ren-Zhong, Gao Tian-Fu, Shu Yao-Gen. Transport performance of coupled Brownian particles in rough ratchet. Acta Physica Sinica, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [7] Fan Li-Ming, Lü Ming-Tao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang. Investigation on the directed transport efficiency of feedback-control ratchet. Acta Physica Sinica, 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [8] Xie Tian-Ting, Deng Ke, Luo Mao-Kang. Direct transport of particles in two-dimensional asymmetric periodic time-shift corrugated channel. Acta Physica Sinica, 2016, 65(15): 150501. doi: 10.7498/aps.65.150501
    [9] Wu Wei-Xia, Song Yan-Li, Han Ying-Rong. A two-dimensional coupled directed transport model. Acta Physica Sinica, 2015, 64(15): 150501. doi: 10.7498/aps.64.150501
    [10] Ren Rui-Bin, Liu De-Hao, Wang Chuan-Yi, Luo Mao-Kang. Directed transport of fractional Brownian motor driven by a temporal asymmetry force. Acta Physica Sinica, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [11] Qin Tian-Qi, Wang Fei, Yang Bo, Luo Mao-Kang. Transport properties of fractional coupled Brownian motors in ratchet potential with feedback. Acta Physica Sinica, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [12] Zhou Xing-Wang, Lin Li-Feng, Ma Hong, Luo Mao-Kang. Temporal-asymmetric fractional Langevin-like ratchet. Acta Physica Sinica, 2014, 63(11): 110501. doi: 10.7498/aps.63.110501
    [13] Tu Zhe, Lai Li, Luo Mao-Kang. Directional transport of fractional asymmetric coupling system in symmetric periodic potential. Acta Physica Sinica, 2014, 63(12): 120503. doi: 10.7498/aps.63.120503
    [14] Wang Fei, Xie Tian-Ting, Deng Cui, Luo Mao-Kang. Influences of the system symmetry and memory on the transport behavior of Brownian motor. Acta Physica Sinica, 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [15] Wang Li-Fang, Gao Tian-Fu, Huang Ren-Zhong, Zheng Yu-Xiang. Influnce of the external force on the directed transport of feedback-coupled Brownian ratchet. Acta Physica Sinica, 2013, 62(7): 070502. doi: 10.7498/aps.62.070502
    [16] Lin Li-Feng, Zhou Xing-Wang, Ma Hong. Subdiffusive transport of fractional two-headed molecular motor. Acta Physica Sinica, 2013, 62(24): 240501. doi: 10.7498/aps.62.240501
    [17] Wu Wei-Xia, Zheng Zhi-Gang. Directed transport of elastically coupled particles in a two-dimensional potential. Acta Physica Sinica, 2013, 62(19): 190511. doi: 10.7498/aps.62.190511
    [18] Bai Wen-Si-Mi, Peng Hao, Tu Zhe, Ma Hong. Fractional Brownian motor and its directed transport. Acta Physica Sinica, 2012, 61(21): 210501. doi: 10.7498/aps.61.210501
    [19] Lü Yan, Wang Hai-Yan, Bao Jing-Dong. Internal ratchet. Acta Physica Sinica, 2010, 59(7): 4466-4471. doi: 10.7498/aps.59.4466
    [20] ZHAN YONG, BAO JING-DONG, ZHUO YI-ZHONG, WU XI-ZHEN. DIRECT TRANSPORTABLE MODEL OF BROWNIAN MOTOR. Acta Physica Sinica, 1997, 46(10): 1880-1887. doi: 10.7498/aps.46.1880
Metrics
  • Abstract views:  559
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2025
  • Accepted Date:  30 September 2025
  • Available Online:  15 October 2025
  • Published Online:  05 January 2026
  • /

    返回文章
    返回