搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外力作用下反馈耦合布朗棘轮的定向输运

王莉芳 高天附 黄仁忠 郑玉祥

引用本文:
Citation:

外力作用下反馈耦合布朗棘轮的定向输运

王莉芳, 高天附, 黄仁忠, 郑玉祥

Influnce of the external force on the directed transport of feedback-coupled Brownian ratchet

Wang Li-Fang, Gao Tian-Fu, Huang Ren-Zhong, Zheng Yu-Xiang
PDF
导出引用
  • 本文研究了处于外力作用下双阱棘轮势中两个反馈耦合布朗粒子的定向输运性能. 通过对过阻尼朗之万方程的数值求解, 详细讨论了外力、热噪声与势阱的不对称参数等对耦合布朗粒子的平均速度、 有效扩散系数及Pe数的影响. 研究发现, 平均速度随外力呈周期性的变化规律. 同时耦合系统存在最优噪声强度会使定向输运达到最强. 值得指出的是棘轮系统可通过改变双阱势的结构来获得较强的定向流.
    The directed transport performance of two coupled Brownian particles in the double-well ratchet potential under the external force has been studied in this paper. Langevin equation in the overdamped regime is solved numerically. The influence of the external force, the thermal noise, and the asymmetric parameter of the potential on the transport properties of the coupled Brownian particles including the average velocity, the effective diffusion coefficient Deff , and the Pe number, is discussed in detail. It is found that the average velocity changes periodically under the external force. Meanwhile, there is an optimal value of the intensity of the thermal noise at which the current reaches the maximum. It is worthwhile to point out that the enhancement of the current can be achieved by changing the structure of the ratchet potential.
    • 基金项目: 辽宁省教育厅科学研究一般项目 (批准号: L2012386) 和复旦大学重点实验室高级访问学者计划 (批准号: 11FG065) 资助的课题.
    • Funds: Project supported by the Scientific Project of the Educational Department of Liaoning Province, China (Grant No. L2012386) and Fudan University Key Lab Senior Visiting Scholar Project, China (Grant No. 11FG065).
    [1]

    Vale R D, Milligan R A 2000 Science 288 88

    [2]

    Vale R D 2003 Cell 112 467

    [3]

    Oster G, Wang H 2003 Trends Cell Biol. 13 114

    [4]

    Reimann P 2002 Phys. Rep. 361 57

    [5]

    Li F Z, Jiang L C 2010 Chin. Phys. B 19 020503

    [6]

    Zeng C H, Wang H 2012 Chin. Phys. B 21 050502

    [7]

    Linke H 2002 Appl. Phys. A: Mater. Sci. Process. 75 167

    [8]

    van den Heuvel M G L, Dekker C 2007 Science 317 333

    [9]

    Braun O M, Kivshar Y S 1998 Phys. Rep. 306 1

    [10]

    Landa P S, McClintock P V E 2000 Phys. Rep. 323 1

    [11]

    Dan D, Jayannavarar A M, Menon G I 2003 Physica A 318 40

    [12]

    Yi S T, Song H, Ou Z E, Ai B Q, Xiong J W 2012 Commun. Theor. Phys. 57 223

    [13]

    Csahk Z, Family F,Vicsek T 1997 Phys. Rev. E 55 5197

    [14]

    Li Y X, Wu X Z, Zhuo Y Z 2000 Mod. Phys. Lett. B 14 479

    [15]

    Feito M, Cao F J 2006 Phys. Rev. E 74 041109

    [16]

    Feito M, Cao F J 2007 Eur. Phys. J. B 59 63

    [17]

    Feito M, Cao F J 2007 Phys. Rev. E 76 061113

    [18]

    Feito M, Cao F J 2008 Physica A 387 4553

    [19]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002

    [20]

    Zhao A K, Zhang H W, Li Y X 2010 Chin. Phys. B 19 110506

    [21]

    Rousselet J, Salome L, Ajdari A, Prost J 1994 Nature 370 446

    [22]

    Evstigneev M, Gehlen S, Reimann P 2010 Phys. Rev. E 79 011116

    [23]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502

    [24]

    Bier M 2007 Biosystems 88 301

    [25]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [26]

    Bustamante C, Chemla Y R, Forde N R, Izhaky D 2004 Annu. Rev. Biochem. 73 705

    [27]

    Lv Y, Wang H Y, Bao J D 2010 Acta Phys. Sin. 59 4466 (in Chinese) [吕艳, 王海燕, 包景东 2010 物理学报 59 4466]

    [28]

    Cao F J, Feito M, Touchette H 2009 Physica A 388 113

    [29]

    de Souza Silva C C, van de Vondel J, Morelle M, Moshchalkov V V 2006 Nature 440 651

    [30]

    Costantini G, Marchesoni F 2001 Phys. Rev. Lett. 87 114102

    [31]

    Zheng Z G, Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

    [32]

    Lindner B, Schimanasky-Geier L 2002 Phys. Rev. Lett. 89 230602

    [33]

    Wang H Y, Bao J D 2005 Physica A 357 373

  • [1]

    Vale R D, Milligan R A 2000 Science 288 88

    [2]

    Vale R D 2003 Cell 112 467

    [3]

    Oster G, Wang H 2003 Trends Cell Biol. 13 114

    [4]

    Reimann P 2002 Phys. Rep. 361 57

    [5]

    Li F Z, Jiang L C 2010 Chin. Phys. B 19 020503

    [6]

    Zeng C H, Wang H 2012 Chin. Phys. B 21 050502

    [7]

    Linke H 2002 Appl. Phys. A: Mater. Sci. Process. 75 167

    [8]

    van den Heuvel M G L, Dekker C 2007 Science 317 333

    [9]

    Braun O M, Kivshar Y S 1998 Phys. Rep. 306 1

    [10]

    Landa P S, McClintock P V E 2000 Phys. Rep. 323 1

    [11]

    Dan D, Jayannavarar A M, Menon G I 2003 Physica A 318 40

    [12]

    Yi S T, Song H, Ou Z E, Ai B Q, Xiong J W 2012 Commun. Theor. Phys. 57 223

    [13]

    Csahk Z, Family F,Vicsek T 1997 Phys. Rev. E 55 5197

    [14]

    Li Y X, Wu X Z, Zhuo Y Z 2000 Mod. Phys. Lett. B 14 479

    [15]

    Feito M, Cao F J 2006 Phys. Rev. E 74 041109

    [16]

    Feito M, Cao F J 2007 Eur. Phys. J. B 59 63

    [17]

    Feito M, Cao F J 2007 Phys. Rev. E 76 061113

    [18]

    Feito M, Cao F J 2008 Physica A 387 4553

    [19]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002

    [20]

    Zhao A K, Zhang H W, Li Y X 2010 Chin. Phys. B 19 110506

    [21]

    Rousselet J, Salome L, Ajdari A, Prost J 1994 Nature 370 446

    [22]

    Evstigneev M, Gehlen S, Reimann P 2010 Phys. Rev. E 79 011116

    [23]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502

    [24]

    Bier M 2007 Biosystems 88 301

    [25]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [26]

    Bustamante C, Chemla Y R, Forde N R, Izhaky D 2004 Annu. Rev. Biochem. 73 705

    [27]

    Lv Y, Wang H Y, Bao J D 2010 Acta Phys. Sin. 59 4466 (in Chinese) [吕艳, 王海燕, 包景东 2010 物理学报 59 4466]

    [28]

    Cao F J, Feito M, Touchette H 2009 Physica A 388 113

    [29]

    de Souza Silva C C, van de Vondel J, Morelle M, Moshchalkov V V 2006 Nature 440 651

    [30]

    Costantini G, Marchesoni F 2001 Phys. Rev. Lett. 87 114102

    [31]

    Zheng Z G, Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

    [32]

    Lindner B, Schimanasky-Geier L 2002 Phys. Rev. Lett. 89 230602

    [33]

    Wang H Y, Bao J D 2005 Physica A 357 373

  • [1] 刘艳艳, 孙佳明, 范黎明, 高天附, 郑志刚. 非保守力作用下二维耦合布朗粒子的定向输运. 物理学报, 2023, 0(0): . doi: 10.7498/aps.72.20221741
    [2] 刘天宇, 曹佳慧, 刘艳艳, 高天附, 郑志刚. 温度反馈控制棘轮的最优控制. 物理学报, 2021, 70(19): 190501. doi: 10.7498/aps.70.20210517
    [3] 曹佳慧, 刘艳艳, 艾保全, 黄仁忠, 高天附. 空间非均匀摩擦棘轮的输运性能. 物理学报, 2021, 70(23): 230201. doi: 10.7498/aps.70.20210802
    [4] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [5] 张旭, 曹佳慧, 艾保全, 高天附, 郑志刚. 摩擦不对称耦合布朗马达的定向输运. 物理学报, 2020, 69(10): 100503. doi: 10.7498/aps.69.20191961
    [6] 夏益祺, 谌庄琳, 郭永坤. 柔性棘轮在活性粒子浴内的自发定向转动. 物理学报, 2019, 68(16): 161101. doi: 10.7498/aps.68.20190425
    [7] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能. 物理学报, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [8] 延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚. 反馈脉冲棘轮的能量转化效率研究. 物理学报, 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [9] 范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚. 反馈控制棘轮的定向输运效率研究. 物理学报, 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [10] 吕明涛, 延明月, 艾保全, 高天附, 郑志刚. 过阻尼布朗棘轮的斯托克斯效率研究. 物理学报, 2017, 66(22): 220501. doi: 10.7498/aps.66.220501
    [11] 杨建强, 马洪, 钟苏川. 分数阶对数耦合系统在非周期外力作用下的定向输运现象. 物理学报, 2015, 64(17): 170501. doi: 10.7498/aps.64.170501
    [12] 任芮彬, 刘德浩, 王传毅, 罗懋康. 时间非对称外力驱动分数阶布朗马达的定向输运. 物理学报, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [13] 王飞, 邓翠, 屠浙, 马洪. 耦合分数阶布朗马达在非对称势中的输运. 物理学报, 2013, 62(4): 040501. doi: 10.7498/aps.62.040501
    [14] 程海涛, 何济洲, 肖宇玲. 周期性双势垒锯齿势中温差驱动的布朗热机. 物理学报, 2012, 61(1): 010502. doi: 10.7498/aps.61.010502
    [15] 葛红霞, 程荣军, 李志鹏. 考虑双速度差效应的耦合映射跟驰模型. 物理学报, 2011, 60(8): 080508. doi: 10.7498/aps.60.080508
    [16] 吕艳, 王海燕, 包景东. 内部棘轮. 物理学报, 2010, 59(7): 4466-4471. doi: 10.7498/aps.59.4466
    [17] 朱佐农. 含外力项的广义KdV方程的类孤子解. 物理学报, 1992, 41(10): 1561-1566. doi: 10.7498/aps.41.1561
    [18] 朱嘉麟. 浅杂质势与窄量子阱的耦合作用. 物理学报, 1989, 38(7): 1093-1102. doi: 10.7498/aps.38.1093
    [19] 胡宁. 一排等距平行直杆后及方格后激流平均速度及温度之分布. 物理学报, 1944, 5(1): 30-48. doi: 10.7498/aps.5.30
    [20] 胡宁. 圆柱体后及轴对称体后激流平均速度及温度之分布. 物理学报, 1944, 5(1): 1-29. doi: 10.7498/aps.5.1
计量
  • 文章访问数:  3890
  • PDF下载量:  638
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-19
  • 修回日期:  2012-11-22
  • 刊出日期:  2013-04-05

外力作用下反馈耦合布朗棘轮的定向输运

  • 1. 沈阳师范大学物理科学与技术学院, 沈阳 110034;
  • 2. 复旦大学光科学与工程系, 上海 200433
    基金项目: 辽宁省教育厅科学研究一般项目 (批准号: L2012386) 和复旦大学重点实验室高级访问学者计划 (批准号: 11FG065) 资助的课题.

摘要: 本文研究了处于外力作用下双阱棘轮势中两个反馈耦合布朗粒子的定向输运性能. 通过对过阻尼朗之万方程的数值求解, 详细讨论了外力、热噪声与势阱的不对称参数等对耦合布朗粒子的平均速度、 有效扩散系数及Pe数的影响. 研究发现, 平均速度随外力呈周期性的变化规律. 同时耦合系统存在最优噪声强度会使定向输运达到最强. 值得指出的是棘轮系统可通过改变双阱势的结构来获得较强的定向流.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回