Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A two-dimensional coupled directed transport model

Wu Wei-Xia Song Yan-Li Han Ying-Rong

Citation:

A two-dimensional coupled directed transport model

Wu Wei-Xia, Song Yan-Li, Han Ying-Rong
cstr: 32037.14.aps.64.150501
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Under the effect of external driving force and noise, a directed transport model for coupled particles in a two-dimensional potential is established. Here, a one-dimensional potential is taken as the periodic piecewise ratchet potential, and the other one is taken as the periodic symmetric non-ratchet potential to which the external periodic driving force and noise are applied. According to the nonequilibrium statistical theory and the nonlinear dynamics, the transport characters of the coupled system in the overdamped case are researched and discussed. Numerical results show that an obvious directed transport can appear both in the ratchet potential and in the non-ratchet potential case. But, the average velocities of the coupled system in the two potentials have completely different dependence on the system parameters. In the case of ratchet potential, the average velocity is strongly dependent on the coupling intensity, noise intensity, the driving strength, and the particle population; the average velocity can reach the maximum at appropriate coupling intensity, noise intensity, the driving strength or the particle population. Otherwise, in the case of non-ratchet potential, the average velocity is strongly dependent on the barrier height for the non-ratchet potential, but fluctuates as the coupling intensity, the driving strength, the driving initial phase difference or the particle population varies. This shows that the average velocity of the coupled system in the non-ratchet potential has weak dependence on system parameters, including the coupling intensity, the driving strength, the driving initial phase difference and the particle population.
    • Funds: Project supported by the Beijing Natural Science Foundation, China (Grant No. 1144011), and the Beijing excellent talent training, China (Grant No. 2012D005004000005).
    [1]

    Reimann P, Hänggi P 2002 Appli. Phys. A 75 169

    [2]

    Linker H, Downton M T, Zuckermann M J 2005 Chaos 15 026111

    [3]

    Hänggi P, Marchesoni F, Nori F 2005 Ann. Phys. 14 51

    [4]

    Burada P S, Schmid G, Talkner P, Hänggi P, Reguera D, Rubí J M 2008 Biosystems 93 16

    [5]

    Xie H Z, Ai B Q, Liu X M, Liu L G, Li Z B 2009 Physica A 388 2093

    [6]

    Dan D, Jayannavar A M, Menon G 2003 Physica A 318 40

    [7]

    Wang H Y, Bao J D 2005 Physica A 357 373

    [8]

    Vincent U E, Senthilkumar D V, Mayer D, Kurths J 2010 Phys. Rev. E 82 046208

    [9]

    Vershnin M, Carter B C, Razafsky D S, King S J, Gross S P 2007 PNAS 104 87

    [10]

    Shtridelman Y, Cahyuti T, Townsend B, DeWitt D, Macosko J C 2008 Cell Biochem. Biophy. 52 19

    [11]

    Ali M Y, Lu H, Bookwalter C S, Warshaw D M, Trybus K M 2008 PNAS 105 4691

    [12]

    Zhao A K, Zhang H W, Li Y X 2010 Chin. Phys. B 19 110506

    [13]

    Fendrik A J, Romanelli L 2012 Phys. Rev. E 85 041149

    [14]

    Wang L F, Gao T F, Huang R Z, Zheng Y X 2013 Acta Phys. Sin. 62 070502 (in Chinese) [王莉芳, 高天附, 黄仁忠, 郑玉祥 2013 物理学报 62 070502]

    [15]

    Tu Z, Lai L, Luo M K 2014 Acta Phys. Sin. 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 物理学报 63 120503]

    [16]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [17]

    Avik W G, Sanjay V K 2000 Phys. Rev. Lett. 84 5243

    [18]

    Bao J D, Zhuo Y Z 1998 Phys. Lett. A 239 228

    [19]

    Zheng Z G, Chen H B 2010 Europhys. Lett. 92 30004

    [20]

    Wu W X, Zheng Z G 2013 Acta Phys. Sin. 62 190511 (in Chinese) [吴魏霞, 郑志刚 2013 物理学报 62 190511]

    [21]

    Zheng Z G 2004 Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) p326 (in Chinese) [郑志刚 2004 耦合非线性系统的时空动力学与合作行为(北京: 高等教育出版社)第324页]

    [22]

    Orlandi J G, Blanch-Mercader C, Brugués J, Casademunt J 2010 Phys. Rev. E 82 061903

    [23]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [24]

    Ai B Q, He Y F, Zhong W R 2014 Journal of Chemical Physics 141 194111

  • [1]

    Reimann P, Hänggi P 2002 Appli. Phys. A 75 169

    [2]

    Linker H, Downton M T, Zuckermann M J 2005 Chaos 15 026111

    [3]

    Hänggi P, Marchesoni F, Nori F 2005 Ann. Phys. 14 51

    [4]

    Burada P S, Schmid G, Talkner P, Hänggi P, Reguera D, Rubí J M 2008 Biosystems 93 16

    [5]

    Xie H Z, Ai B Q, Liu X M, Liu L G, Li Z B 2009 Physica A 388 2093

    [6]

    Dan D, Jayannavar A M, Menon G 2003 Physica A 318 40

    [7]

    Wang H Y, Bao J D 2005 Physica A 357 373

    [8]

    Vincent U E, Senthilkumar D V, Mayer D, Kurths J 2010 Phys. Rev. E 82 046208

    [9]

    Vershnin M, Carter B C, Razafsky D S, King S J, Gross S P 2007 PNAS 104 87

    [10]

    Shtridelman Y, Cahyuti T, Townsend B, DeWitt D, Macosko J C 2008 Cell Biochem. Biophy. 52 19

    [11]

    Ali M Y, Lu H, Bookwalter C S, Warshaw D M, Trybus K M 2008 PNAS 105 4691

    [12]

    Zhao A K, Zhang H W, Li Y X 2010 Chin. Phys. B 19 110506

    [13]

    Fendrik A J, Romanelli L 2012 Phys. Rev. E 85 041149

    [14]

    Wang L F, Gao T F, Huang R Z, Zheng Y X 2013 Acta Phys. Sin. 62 070502 (in Chinese) [王莉芳, 高天附, 黄仁忠, 郑玉祥 2013 物理学报 62 070502]

    [15]

    Tu Z, Lai L, Luo M K 2014 Acta Phys. Sin. 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 物理学报 63 120503]

    [16]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [17]

    Avik W G, Sanjay V K 2000 Phys. Rev. Lett. 84 5243

    [18]

    Bao J D, Zhuo Y Z 1998 Phys. Lett. A 239 228

    [19]

    Zheng Z G, Chen H B 2010 Europhys. Lett. 92 30004

    [20]

    Wu W X, Zheng Z G 2013 Acta Phys. Sin. 62 190511 (in Chinese) [吴魏霞, 郑志刚 2013 物理学报 62 190511]

    [21]

    Zheng Z G 2004 Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) p326 (in Chinese) [郑志刚 2004 耦合非线性系统的时空动力学与合作行为(北京: 高等教育出版社)第324页]

    [22]

    Orlandi J G, Blanch-Mercader C, Brugués J, Casademunt J 2010 Phys. Rev. E 82 061903

    [23]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [24]

    Ai B Q, He Y F, Zhong W R 2014 Journal of Chemical Physics 141 194111

  • [1] WANG Yan, LI Jiajian, AI Baoquan. Asymmetric gear driven by Brownian particles with non-reciprocal interactions. Acta Physica Sinica, 2026, 75(1): . doi: 10.7498/aps.75.20251168
    [2] Peng Hao, Ren Rui-Bin, Zhong Yang-Fan, Yu Tao. Stochastic resonance of fractional-order coupled system excited by trichotomous noise. Acta Physica Sinica, 2022, 71(3): 030502. doi: 10.7498/aps.71.20211272
    [3] Liu Tian-Yu, Cao Jia-Hui, Liu Yan-Yan, Gao Tian-Fu, Zheng Zhi-Gang. Optimal control of temperature feedback control ratchets. Acta Physica Sinica, 2021, 70(19): 190501. doi: 10.7498/aps.70.20210517
    [4] Research on Stochastic Resonance of Fractional-Order Coupled System Excited by Trichotomous Noise. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211272
    [5] Zhang Gao-Jian, Wang Yi-Pu. Observation of the anisotropic exceptional point in cavity magnonics system. Acta Physica Sinica, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [6] Fan Li-Ming, Lü Ming-Tao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang. Investigation on the directed transport efficiency of feedback-control ratchet. Acta Physica Sinica, 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [7] Xie Tian-Ting, Deng Ke, Luo Mao-Kang. Direct transport of particles in two-dimensional asymmetric periodic time-shift corrugated channel. Acta Physica Sinica, 2016, 65(15): 150501. doi: 10.7498/aps.65.150501
    [8] Ren Rui-Bin, Liu De-Hao, Wang Chuan-Yi, Luo Mao-Kang. Directed transport of fractional Brownian motor driven by a temporal asymmetry force. Acta Physica Sinica, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [9] Qin Tian-Qi, Wang Fei, Yang Bo, Luo Mao-Kang. Transport properties of fractional coupled Brownian motors in ratchet potential with feedback. Acta Physica Sinica, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [10] Zhou Xing-Wang, Lin Li-Feng, Ma Hong, Luo Mao-Kang. Temporal-asymmetric fractional Langevin-like ratchet. Acta Physica Sinica, 2014, 63(11): 110501. doi: 10.7498/aps.63.110501
    [11] Wang Fei, Xie Tian-Ting, Deng Cui, Luo Mao-Kang. Influences of the system symmetry and memory on the transport behavior of Brownian motor. Acta Physica Sinica, 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [12] Tu Zhe, Lai Li, Luo Mao-Kang. Directional transport of fractional asymmetric coupling system in symmetric periodic potential. Acta Physica Sinica, 2014, 63(12): 120503. doi: 10.7498/aps.63.120503
    [13] Lin Li-Feng, Zhou Xing-Wang, Ma Hong. Subdiffusive transport of fractional two-headed molecular motor. Acta Physica Sinica, 2013, 62(24): 240501. doi: 10.7498/aps.62.240501
    [14] Wu Wei-Xia, Zheng Zhi-Gang. Directed transport of elastically coupled particles in a two-dimensional potential. Acta Physica Sinica, 2013, 62(19): 190511. doi: 10.7498/aps.62.190511
    [15] Bai Wen-Si-Mi, Peng Hao, Tu Zhe, Ma Hong. Fractional Brownian motor and its directed transport. Acta Physica Sinica, 2012, 61(21): 210501. doi: 10.7498/aps.61.210501
    [16] Bai Zhao-Guo, Dong Li-Fang, Li Yong-Hui, Fan Wei-Li. Superlattice patterns in a coupled two-layer Lengel-Epstein model. Acta Physica Sinica, 2011, 60(11): 118201. doi: 10.7498/aps.60.118201
    [17] Lü Yan, Wang Hai-Yan, Bao Jing-Dong. Internal ratchet. Acta Physica Sinica, 2010, 59(7): 4466-4471. doi: 10.7498/aps.59.4466
    [18] Lin Min, Fang Li-Min, Zhu Ruo-Gu. The dual-resonance characteristic of coupled bistable system affected by two-frequency signal. Acta Physica Sinica, 2008, 57(5): 2638-2642. doi: 10.7498/aps.57.2638
    [19] Mo Jia-Qi, Wang Hui, Lin Wan-Tao, Lin Yi-Hua. Sea-air oscillator model for equatorial eastern Pacific SST. Acta Physica Sinica, 2006, 55(1): 6-9. doi: 10.7498/aps.55.6
    [20] Cui Yuan-Shun. Effect of quantum current magnification in a mesoscopic multi-ring coupling sys tem. Acta Physica Sinica, 2005, 54(4): 1799-1803. doi: 10.7498/aps.54.1799
Metrics
  • Abstract views:  7466
  • PDF Downloads:  310
  • Cited By: 0
Publishing process
  • Received Date:  23 January 2015
  • Accepted Date:  18 March 2015
  • Published Online:  05 August 2015
  • /

    返回文章
    返回