Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transport properties of fractional coupled Brownian motors in ratchet potential with feedback

Qin Tian-Qi Wang Fei Yang Bo Luo Mao-Kang

Citation:

Transport properties of fractional coupled Brownian motors in ratchet potential with feedback

Qin Tian-Qi, Wang Fei, Yang Bo, Luo Mao-Kang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the theory of fractional integration, direct transport behaviors of coupled Brownian motors with feedback control in viscoelastic media are investigated. The mathematical model of fractional overdamped coupled Brownian motors is established by adopting the power function as damping kernel function of general Langevin equation due to the power-law memory characteristics of cytosol in biological cells. Numerical solution is observed by fractional difference method and the influence of model parameters on cooperative direct transport of the coupled Brownian motors is discussed in detail by numerical simulation. The research shows that the memory of the fractional dynamical system can affect the direct transport phenomenon of the coupled Brownian motors through changing the on-off switching frequency of the ratchet potential with feedback control. To be more specific, in a proper range of the fractional order, the memory of the dynamical system can increase the on-off switching frequency of the ratchet potential, which can lead to the velocity increase of the direct transport. Furthermore, in the case of small fractional order, since the coupled Brownian motors move under the competition between the damping force with memory and the potential force with feedback control, the resultant force exerted on the coupled particles is always positive when the ratchet potential with feedback control is on although the fractional damping force is large, which leads to the result that the coupled Brownian motors move in the positive direction in the mass. On the contrary, in the case of large fractional order, the on-off switching frequency of potential with feedback control becomes small, as a result of which the main influential factor of the direct transport becomes the potential depth. Therefore the coupled Brownian motors are more likely to stay in the potential wells for a long time because the probability that describes the possibility that the coupled Brownian motors surmount the potential barriers becomes small. Finally, with the parameters of the fractional dynamical system (e.g. potential depth, noise intensity) fixed, the direct transport velocity of the coupled Brownian motors shows the generalized stochastic resonant phenomenon while the fractional order varies.
    • Funds: Project supported by the National Natural Science Foundation of China (Grand No. 11171238) and the Foundation of Science and Technology on Electronic Information Control Laboratory, China (Grant No. 2013035).
    [1]

    Nishyama M, Muto E, Inoue Y, Yanagida T, Higuchi H 2001 Nature Cell Biology 3 425

    [2]

    Reimann P 2002 Phys. Rep. 361 57

    [3]

    Cordova N G, Ermentrout B, Oster G 1992 Proc. Natl. Acad. Sci. USA 89 339

    [4]

    Gao T F, Zhang Y, Chen J C 2009 Chin. Phys. B 18 3279

    [5]

    Zeng C H, Wang H 2012 Chin. Phys. B 21 050502

    [6]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [7]

    Dan D, Jayannavarar A M, Menon G I 2003 Physica A 318 40

    [8]

    Rozenbaum V M, Yang D Y, Lin S H, Tsong T Y 2006 Physica A 363 211

    [9]

    Dinis L, Parron do J M R, Cao F J 2005 Europhys. Lett. 71 536

    [10]

    Lindén M, Tuohimaa T, Jonsson A B, Wallin M F 2006 Phys. Rev. E 74 021908

    [11]

    Craig E M, Zuckermann M J, Linke H J 2006 Phys. Rev. E 73 051106

    [12]

    Lattanzi G, Maritan A 2001 Phys. Rev. Lett. 86 1134

    [13]

    Cao F J, Dinis L, Parrondo J M R 2004 Phys. Rev. Lett. 93 040603

    [14]

    Feito M, Cao F J 2006 Phys. Rev. E 74 041109

    [15]

    Feito M, Cao F J 2007 Eur. Phys. J. B 59 63

    [16]

    Feito M, Cao F J 2007 Phys. Rev. E 76 061113

    [17]

    Feito M, Cao F J 2008 Physica A 387 4553

    [18]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002

    [19]

    Zhao A K, Zhang H W, Li Y X 2010 Chin. Phys. B 19 110506

    [20]

    Wang L F, Gao T F, Huang R Z, Zheng Y X 2013 Acta Phys. Sin. 62 070502 (in Chinese) [王莉芳, 高天附, 黄仁忠, 郑玉祥 2013 物理学报 62 070502]

    [21]

    Evstigneev M, Gehlen S, Reimann P 2009

    [22]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502

    [23]

    Bier M 2007 Biosystems 88 301

    [24]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [25]

    Bustamante C, Chemla Y R, Forde N R, Izhaky D 2004 Annu. Rev. Biochem. 73 705

    [26]

    Cao F J, Feito M, Touchette H 2009 Physica A 388 113

    [27]

    Mathur A B, Collinsworth A M, Reichert W M, Kraus W E, Truskey G A 2001 J. Biomech. 34 1545

    [28]

    Azuma N, Aysin S D, Ikeda M, Kito H, Akadaka N, Sasajima T, Sumpio B E 2000 J. Vasc. Surg. 32 789

    [29]

    Guilak F, Tedrow J R, Burgkart R 2000 Biochem. Biophys. Res. Commun. 269 781

    [30]

    Bao J D 2012 Introduction to Anomalous Statistics Dynamics (Beijing: Science Press) p196 (in Chinese) [包景东 2012 反常统计动力学导论 (北京: 科学出版社) 第196页]

    [31]

    Widom A 1971 Phys. Rev. A 3 1394

    [32]

    Lin L F, Zhou X W, Ma H 2013 Acta Phys. Sin. 62 240501 (in Chinese) [林丽烽, 周兴旺, 马洪 2013 物理学报 62 240501]

    [33]

    Bai W S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501]

    [34]

    Gitterman M 2005 Phys. Stat. Mech. Appl. 352 309

    [35]

    Oldham K B, Spanier J 1974 The Fractional Calculus (New York: Academic Press)

    [36]

    Liu F, Anh V, Turner I, Zhuang P 2003 J. Appl. Math. Comput. 13 233

    [37]

    Petrás I 2011 Fractional-Order Nonlinear Systerms Modeling, Analysis and Simulation (1st Ed.) (Beijing: Higher Education Press) p19

  • [1]

    Nishyama M, Muto E, Inoue Y, Yanagida T, Higuchi H 2001 Nature Cell Biology 3 425

    [2]

    Reimann P 2002 Phys. Rep. 361 57

    [3]

    Cordova N G, Ermentrout B, Oster G 1992 Proc. Natl. Acad. Sci. USA 89 339

    [4]

    Gao T F, Zhang Y, Chen J C 2009 Chin. Phys. B 18 3279

    [5]

    Zeng C H, Wang H 2012 Chin. Phys. B 21 050502

    [6]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [7]

    Dan D, Jayannavarar A M, Menon G I 2003 Physica A 318 40

    [8]

    Rozenbaum V M, Yang D Y, Lin S H, Tsong T Y 2006 Physica A 363 211

    [9]

    Dinis L, Parron do J M R, Cao F J 2005 Europhys. Lett. 71 536

    [10]

    Lindén M, Tuohimaa T, Jonsson A B, Wallin M F 2006 Phys. Rev. E 74 021908

    [11]

    Craig E M, Zuckermann M J, Linke H J 2006 Phys. Rev. E 73 051106

    [12]

    Lattanzi G, Maritan A 2001 Phys. Rev. Lett. 86 1134

    [13]

    Cao F J, Dinis L, Parrondo J M R 2004 Phys. Rev. Lett. 93 040603

    [14]

    Feito M, Cao F J 2006 Phys. Rev. E 74 041109

    [15]

    Feito M, Cao F J 2007 Eur. Phys. J. B 59 63

    [16]

    Feito M, Cao F J 2007 Phys. Rev. E 76 061113

    [17]

    Feito M, Cao F J 2008 Physica A 387 4553

    [18]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002

    [19]

    Zhao A K, Zhang H W, Li Y X 2010 Chin. Phys. B 19 110506

    [20]

    Wang L F, Gao T F, Huang R Z, Zheng Y X 2013 Acta Phys. Sin. 62 070502 (in Chinese) [王莉芳, 高天附, 黄仁忠, 郑玉祥 2013 物理学报 62 070502]

    [21]

    Evstigneev M, Gehlen S, Reimann P 2009

    [22]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502

    [23]

    Bier M 2007 Biosystems 88 301

    [24]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [25]

    Bustamante C, Chemla Y R, Forde N R, Izhaky D 2004 Annu. Rev. Biochem. 73 705

    [26]

    Cao F J, Feito M, Touchette H 2009 Physica A 388 113

    [27]

    Mathur A B, Collinsworth A M, Reichert W M, Kraus W E, Truskey G A 2001 J. Biomech. 34 1545

    [28]

    Azuma N, Aysin S D, Ikeda M, Kito H, Akadaka N, Sasajima T, Sumpio B E 2000 J. Vasc. Surg. 32 789

    [29]

    Guilak F, Tedrow J R, Burgkart R 2000 Biochem. Biophys. Res. Commun. 269 781

    [30]

    Bao J D 2012 Introduction to Anomalous Statistics Dynamics (Beijing: Science Press) p196 (in Chinese) [包景东 2012 反常统计动力学导论 (北京: 科学出版社) 第196页]

    [31]

    Widom A 1971 Phys. Rev. A 3 1394

    [32]

    Lin L F, Zhou X W, Ma H 2013 Acta Phys. Sin. 62 240501 (in Chinese) [林丽烽, 周兴旺, 马洪 2013 物理学报 62 240501]

    [33]

    Bai W S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501]

    [34]

    Gitterman M 2005 Phys. Stat. Mech. Appl. 352 309

    [35]

    Oldham K B, Spanier J 1974 The Fractional Calculus (New York: Academic Press)

    [36]

    Liu F, Anh V, Turner I, Zhuang P 2003 J. Appl. Math. Comput. 13 233

    [37]

    Petrás I 2011 Fractional-Order Nonlinear Systerms Modeling, Analysis and Simulation (1st Ed.) (Beijing: Higher Education Press) p19

  • [1] Liu Tian-Yu, Cao Jia-Hui, Liu Yan-Yan, Gao Tian-Fu, Zheng Zhi-Gang. Optimal control of temperature feedback control ratchets. Acta Physica Sinica, 2021, 70(19): 190501. doi: 10.7498/aps.70.20210517
    [2] Fan Li-Ming, Lü Ming-Tao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang. Investigation on the directed transport efficiency of feedback-control ratchet. Acta Physica Sinica, 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [3] Xie Tian-Ting, Deng Ke, Luo Mao-Kang. Direct transport of particles in two-dimensional asymmetric periodic time-shift corrugated channel. Acta Physica Sinica, 2016, 65(15): 150501. doi: 10.7498/aps.65.150501
    [4] Wu Wei-Xia, Song Yan-Li, Han Ying-Rong. A two-dimensional coupled directed transport model. Acta Physica Sinica, 2015, 64(15): 150501. doi: 10.7498/aps.64.150501
    [5] Yang Jian-Qiang, Ma Hong, Zhong Su-Chuan. The directional transport phenomenon in fractional logarithm coupled system under a non-periodic external force. Acta Physica Sinica, 2015, 64(17): 170501. doi: 10.7498/aps.64.170501
    [6] Ren Rui-Bin, Liu De-Hao, Wang Chuan-Yi, Luo Mao-Kang. Directed transport of fractional Brownian motor driven by a temporal asymmetry force. Acta Physica Sinica, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [7] Zhou Xing-Wang, Lin Li-Feng, Ma Hong, Luo Mao-Kang. Temporal-asymmetric fractional Langevin-like ratchet. Acta Physica Sinica, 2014, 63(11): 110501. doi: 10.7498/aps.63.110501
    [8] Wang Fei, Xie Tian-Ting, Deng Cui, Luo Mao-Kang. Influences of the system symmetry and memory on the transport behavior of Brownian motor. Acta Physica Sinica, 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [9] Tu Zhe, Lai Li, Luo Mao-Kang. Directional transport of fractional asymmetric coupling system in symmetric periodic potential. Acta Physica Sinica, 2014, 63(12): 120503. doi: 10.7498/aps.63.120503
    [10] Zeng Zhe-Zhao. Feedback compensation control on chaotic system with uncertainty based on radial basis function neural network. Acta Physica Sinica, 2013, 62(3): 030504. doi: 10.7498/aps.62.030504
    [11] Wu Wei-Xia, Zheng Zhi-Gang. Directed transport of elastically coupled particles in a two-dimensional potential. Acta Physica Sinica, 2013, 62(19): 190511. doi: 10.7498/aps.62.190511
    [12] Lin Li-Feng, Zhou Xing-Wang, Ma Hong. Subdiffusive transport of fractional two-headed molecular motor. Acta Physica Sinica, 2013, 62(24): 240501. doi: 10.7498/aps.62.240501
    [13] Lai Li, Zhou Xue-Xue, Ma Hong, Luo Mao-Kang. Transport properties of fractional coupled Brownian motors in flash ratchet potential. Acta Physica Sinica, 2013, 62(15): 150502. doi: 10.7498/aps.62.150502
    [14] Bai Wen-Si-Mi, Peng Hao, Tu Zhe, Ma Hong. Fractional Brownian motor and its directed transport. Acta Physica Sinica, 2012, 61(21): 210501. doi: 10.7498/aps.61.210501
    [15] Huang Li-Lian, Xin Fang, Wang Lin-Yu. Circuit implementation and control of a new fractional-order hyperchaotic system. Acta Physica Sinica, 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [16] Shi Zheng-Ping. Simple chaotic oscillator’s chaos behavior and its feedback control circuit design. Acta Physica Sinica, 2010, 59(9): 5940-5948. doi: 10.7498/aps.59.5940
    [17] Lin Min, Huang Yong-Mei, Fang Li-Min. The feedback control of stochastic resonance in bistable system. Acta Physica Sinica, 2008, 57(4): 2041-2047. doi: 10.7498/aps.57.2041
    [18] Du Lin, Xu Wei, Jia Fei-Lei, Li Shuang. Control of gyro system based on lowpass filter function feedback. Acta Physica Sinica, 2007, 56(7): 3813-3819. doi: 10.7498/aps.56.3813
    [19] Chen Xuan, Gao Zi-You, Zhao Xiao-Mei, Jia Bin. Study on the two-lane feedback controled car-following model. Acta Physica Sinica, 2007, 56(4): 2024-2029. doi: 10.7498/aps.56.2024
    [20] Liu Su-Hua, Tang Jia-Shi. Linear feedback control of Hopf bifurcation in Langford system. Acta Physica Sinica, 2007, 56(6): 3145-3151. doi: 10.7498/aps.56.3145
Metrics
  • Abstract views:  6532
  • PDF Downloads:  253
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2014
  • Accepted Date:  25 January 2015
  • Published Online:  05 June 2015

/

返回文章
返回