搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于1.06 μm波长的空间合作目标及碎片高精度激光测距试验

孟文东 张海峰 邓华荣 汤凯 吴志波 王煜蓉 吴光 张忠萍 陈欣扬

引用本文:
Citation:

基于1.06 μm波长的空间合作目标及碎片高精度激光测距试验

孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬

1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection

Meng Wen-Dong, Zhang Hai-Feng, Deng Hua-Rong, Tang Kai, Wu Zhi-Bo, Wang Yu-Rong, Wu Guang, Zhang Zhong-Ping, Chen Xin-Yang
PDF
HTML
导出引用
  • 常规卫星激光测距大多数采用532 nm波长激光, 但受激光能量和大气透过率低等瓶颈制约, 在微弱目标探测如碎片激光测距、月球激光测距中使用难度较大. 本文介绍了基于1.06 μm波长的激光测距技术, 分析了1.06 μm测距技术在激光能量、大气传输、背景噪声、单光子探测等方面相对于532 nm激光测距的优势, 分析了其应用于微弱目标激光测距的前景, 提出了针对1.06 μm激光测距系统的改造方案, 在上海天文台532 nm卫星激光测距系统的基础上, 完成了系统改造, 国内首次利用1.06 μm增强的InGaAs探测器实现对合作目标的高精度厘米级激光测距, 证明了1.06 μm波长激光测距技术在系统噪声和测量效率等方面的优势, 并且实现了该波长对1500 km空间碎片目标的高精度激光测距, 为未来远距离微弱目标高精度近红外波段激光测距提供了紧凑、低成本、易操作的测量技术方案.
    Classical satellite laser ranging (SLR) technology based on 532 nm wavelength usually adopts low energy laser to measure cooperative objects. However, for a very weak target, such as debris and lunar reflector arrays, laser ranging system should have much stronger detection capability than the laser ranging system for traditional application. A common way to improve system detection capability is to use high energy laser. With an additional frequency doubling crystal, it is more difficult to make a high energy laser based on 532 nm than that based on 1.06 μm, which restricts the improvement of system detection capability, and also gives rise to the short lifetime, poor system stability problems. Compared with 532 nm laser, the 1.06 μm laser has many advantages of high laser energy and power, high atmospheric transmissivity, and low background noise, thereby making it an ideal substitution for the traditional 532 nm SLR system. In this paper, we comparatively analyze the above-mentiond advantages of the 1.06 μm laser and other system’s key parameters such as detector efficiency and target reflection efficiency, calculate the echo photons one can obtain, and establish a 1.06 μm laser ranging system based on the existing 532 nm SLR at Shanghai Astronomical Observatory. Owing to the using of an InGaAs single photon detector, the system turns very compact, low cost, easy-to-be-installed and has almost no additional operation complexity than the 532 nm system. With this system, the high precision 1.06 μm laser ranging for cooperative objects based on InGaAs detector is carried out for the first time in China, and a ranging for space debris 1500 km away can also be realized. The ranging experiment shows with the same laser, SLR using 1.06 μm output reaches a detection efficiency of 7 times the detection efficiency the SLR using 532 nm output reaches, and the background noise only 1/5. This approves the advantages and feasibility of 1.06 μm system, and also shows its great potential application prospects in the high precision weak target laser detection in the day and night time. This paper provides a very easy operation, high compact and low cost method for the future high precision weak target laser ranging.
      通信作者: 吴光, gwu@phy.ecnu.edu.cn ; 张忠萍, zzp@shao.ac.cn
    • 基金项目: 中国科学院青年创新促进会(会员号: 2018303)、中国科学院国防创新基金(批准号: CXJJ-16S009)和国家自然科学基金(批准号: U1231107, U1631240, 11774095, 11804099)资助的课题
      Corresponding author: Wu Guang, gwu@phy.ecnu.edu.cn ; Zhang Zhong-Ping, zzp@shao.ac.cn
    • Funds: Project supported by the Youth Innovation Promotion Association of CAS (id. 2018303), the National Defense Innovation Fund of the Chinese academy of sciences, China (Grant No. CXJJ-16S009), the National Natural Science Foundation of China (Grant Nos. U1231107, U1631240, 11774095, 11804099)
    [1]

    扈荆夫 2003 博士学位论文 (上海: 中国科学院研究生院 (上海天文台))

    Hu J F 2003 Ph. D. Dissertation (Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences) (in Chinese)

    [2]

    秦显平 2003 硕士学位论文 (郑州: 中国人民解放军信息工程大学)

    Qin X P 2003 M.S. Thesis (Zhengzhou: Information Engineering University) (in Chinese)

    [3]

    杨福民, 谭德同, 肖炽焜, 李振宇, 陆文虎, 陈婉珍, 蔡世福, 陈富祥, 张忠平, 胡振琪 1986 科学通报 31 1161

    Yang F M, Tan D T, Xiao Z K, Li Z Y, Lu W H, Chen W Z, Cai S F, Chen F X, Zhang Z P, Hu Z Q 1986 Chin. Sci. Bull. 31 1161

    [4]

    何妙福, Tapley B D, Eanes R J 1980 中国科学: 物理学 力学 天文学 25 636

    He M F, Tapley B D, Eanes R J 1980 Scientia Sinica Physica, Mechanica & Astronomica 25 636

    [5]

    丁剑, 瞿锋, 李谦, 程伯辉 2010 测绘科学 35 5

    Ding J, Qu F, Li Q, Cheng B H 2010 Science of Surveying & Mapping 35 5

    [6]

    朱新慧, 杨力, 孙付平, 王刃 2014 测绘学报 43 240

    Zhu X H, Yang L, Sun F P, Wang R 2014 Acta Geod. Cartogr. Sin. 43 240

    [7]

    Degnan J 2002 J. Geodyn. 34 551Google Scholar

    [8]

    刘静, 王荣兰, 张宏博, 肖佐 2004 空间科学学报 24 462Google Scholar

    Liu J, Wang R L, Zhang H B, Xiao Z 2004 Chin. J. Space Sci. 24 462Google Scholar

    [9]

    张忠萍, 程志恩, 张海峰, 邓华荣, 江海 2017 红外与激光工程 46 8

    Zhang Z P, Cheng Z E, Zhang H F, Deng R H, Jiang H 2017 Infrared Laser Eng. 46 8

    [10]

    宋清丽, 梁智鹏, 董雪, 韩兴伟, 范存波 2016 光学精密工程 24 175

    Song Q L, Liang Z P, Dong X, Han X W, Fan C B 2016 Opt. & Precision Eng. 24 175

    [11]

    李祝莲, 张海涛, 李语强, 伏红林, 翟东升 2017 红外与激光工程 46 269

    Li Z L, Zhang H T, Li Y Q, Fu H L, Zhai D S 2017 Infrared Laser Eng. 46 269

    [12]

    Schreiber U, Haufe K H, Dassing R 1993 8th International Workshop on Laser Ranging Instrumentation Annapolis, MD USA, May 18−22, 1992 p7

    [13]

    Courde C, Torre J M, Samain E, Martinot-Lagarde G, Aimar M, Albanese D, Exertier P, Feraudy D, Fienga A, Mariey H, Métris G, Viot H, Viswanathan V. Astron. Astrophys. 602 A90

    [14]

    Smith C, Greene B 2006 The Advanced Maui Optical and Space Surveillance Technologies Conference Maui, Hawaii, September 10−14, 2006 id.E86

    [15]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar

    [16]

    Shell J R 2010 Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference Maui, HI, USA, September 14−17, 2010 p E42

    [17]

    Degnan J J 1993 Contributions of Space Geodesy to Geodynamics: Technology 25 133

    [18]

    Princeton Lightwave Inc. https://sphotonics.ru/upload/iblock/ 21c/pga_series_single_photon_counting_avalanche_photo- diode.pdf [2019-8-20]

    [19]

    Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. Chin. Phys. Mechanics & Astronomy 60 120314

    [20]

    Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y, Liu X Y, Wang Z, Xie X M 2016 Opt. Express 24 3535Google Scholar

    [21]

    Jorgensen K, Jarvis K S, Hamada K, Parr-Thumm T L, Africano J L, Stansbery E G 2003 Proc. of the 54th International Astronautical Congress Bremen, Germany, September 29−October 3, 2003 p1

    [22]

    Victoria M, Domínguez C, Askins S, Antón I, Sala G 2012 Jpn. J. Appl. Phys. AM15D 10ND06

    [23]

    杨福民, 肖炽焜, 陈婉珍, 张忠萍, 谭德同, 龚向东, 陈菊平, 黄力, 章建华 1998 中国科学(A辑) 28(11) 1048

    Yang F M, Xiao Z K, Chen W Z, Zhang Z P, Tan D T, Gong X D, Chen J P, Huang L, Zhang J H 1998 Sci. Chin. (Series A) 28(11) 1048

  • 图 1  (a) 1.06 μm和532 nm单程大气透过率随不同仰角变化模型曲线; (b) 1.06 μm和532 nm单双程大气透过率比随不同仰角变化的比例曲线

    Fig. 1.  (a) The curve of one-way atmospheric transmissivity at 1.06 μm and 532 nm with different elevation angles; (b) the scale curve of one-way and two-way atmospheric transmissivity at 1.06 μm and 532 nm with different elevation angles.

    图 2  上海天文台1.06 μm激光测距系统和改造框图

    Fig. 2.  Diagram of 1.06 μm SLR system in Shanghai Astronomical Observatory.

    图 3  1.06 μm激光测距系统光尖监视图

    Fig. 3.  Monitoring picture of the light-cone in 1.06 μm laser ranging system.

    图 4  1.06 μm开展碎片激光测距实时测量界面截图

    Fig. 4.  Screenshot of real time 1.06 μm debris laser ranging measurement interface.

    表 1  2016年合作目标激光测距1.06 μm和532 nm波长测距结果和比对表

    Table 1.  The comparison table of cooperative target laser ranging at 1.06 μm and 532 nm.

    圈次仰角均值/(º)轨道高度/kmPoint测距精度/mm回波率噪声密度/个·s–1·m–1
    1.06 μm
    16072019.LES371450764120.518.64%0.622
    16072019. G1483578648914.90.15%0.498
    16072020.G185619140966833.11.83%0.680
    16072020.G17511914071531.70.22%0.700
    16072019. I75135786332518.91.44%0.646
    16072018.G026519140979823.65.10%0.583
    532 nm
    17091802.LES37145010376.43.99%6.574
    17091715.G14835786171310.50.14%8.114
    17082218.G18541914043750.75%
    17082318.G175119140132313.82.32%1.126
    17072720.I55135786130212.30.30%1.616
    17072216.G026519140302611.70.37%6.015
    下载: 导出CSV

    表 2  2019年合作目标导航卫星激光测距1.06 μm和532 nm波长测距结果和比对表

    Table 2.  The comparison table of navigation satellites laser ranging at 1.06 μm and 532 nm in 2019.

    圈次组别仰角均值轨道高度点数测量时长测距精度回波率噪声密度
    /(º)/km/min/mm/个·s–1·m–1
    1901171707.G121G121-1064-24519, 14015421.223.22.142%0.523
    G121-532-1453802.120.10.302%3.36
    1901171719.I5I5-1064-B-15335, 786960.78321.40.204%0.65
    I5-532-2551372.283160.1%3.24
    1901171744.G1G1-10644935, 786450211.50.381%0.51
    G1-532491452.2177.90.109%3.15
    三组数据分别为对俄罗斯Glonass-121卫星, 中国北斗IGSO-5卫星, 中国北斗GEO-1卫星的观测数据, 每组数据的第一行为利用1.06 μm波长的测距结果, 第二行为利用532 nm波长的测距结果.
    下载: 导出CSV
  • [1]

    扈荆夫 2003 博士学位论文 (上海: 中国科学院研究生院 (上海天文台))

    Hu J F 2003 Ph. D. Dissertation (Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences) (in Chinese)

    [2]

    秦显平 2003 硕士学位论文 (郑州: 中国人民解放军信息工程大学)

    Qin X P 2003 M.S. Thesis (Zhengzhou: Information Engineering University) (in Chinese)

    [3]

    杨福民, 谭德同, 肖炽焜, 李振宇, 陆文虎, 陈婉珍, 蔡世福, 陈富祥, 张忠平, 胡振琪 1986 科学通报 31 1161

    Yang F M, Tan D T, Xiao Z K, Li Z Y, Lu W H, Chen W Z, Cai S F, Chen F X, Zhang Z P, Hu Z Q 1986 Chin. Sci. Bull. 31 1161

    [4]

    何妙福, Tapley B D, Eanes R J 1980 中国科学: 物理学 力学 天文学 25 636

    He M F, Tapley B D, Eanes R J 1980 Scientia Sinica Physica, Mechanica & Astronomica 25 636

    [5]

    丁剑, 瞿锋, 李谦, 程伯辉 2010 测绘科学 35 5

    Ding J, Qu F, Li Q, Cheng B H 2010 Science of Surveying & Mapping 35 5

    [6]

    朱新慧, 杨力, 孙付平, 王刃 2014 测绘学报 43 240

    Zhu X H, Yang L, Sun F P, Wang R 2014 Acta Geod. Cartogr. Sin. 43 240

    [7]

    Degnan J 2002 J. Geodyn. 34 551Google Scholar

    [8]

    刘静, 王荣兰, 张宏博, 肖佐 2004 空间科学学报 24 462Google Scholar

    Liu J, Wang R L, Zhang H B, Xiao Z 2004 Chin. J. Space Sci. 24 462Google Scholar

    [9]

    张忠萍, 程志恩, 张海峰, 邓华荣, 江海 2017 红外与激光工程 46 8

    Zhang Z P, Cheng Z E, Zhang H F, Deng R H, Jiang H 2017 Infrared Laser Eng. 46 8

    [10]

    宋清丽, 梁智鹏, 董雪, 韩兴伟, 范存波 2016 光学精密工程 24 175

    Song Q L, Liang Z P, Dong X, Han X W, Fan C B 2016 Opt. & Precision Eng. 24 175

    [11]

    李祝莲, 张海涛, 李语强, 伏红林, 翟东升 2017 红外与激光工程 46 269

    Li Z L, Zhang H T, Li Y Q, Fu H L, Zhai D S 2017 Infrared Laser Eng. 46 269

    [12]

    Schreiber U, Haufe K H, Dassing R 1993 8th International Workshop on Laser Ranging Instrumentation Annapolis, MD USA, May 18−22, 1992 p7

    [13]

    Courde C, Torre J M, Samain E, Martinot-Lagarde G, Aimar M, Albanese D, Exertier P, Feraudy D, Fienga A, Mariey H, Métris G, Viot H, Viswanathan V. Astron. Astrophys. 602 A90

    [14]

    Smith C, Greene B 2006 The Advanced Maui Optical and Space Surveillance Technologies Conference Maui, Hawaii, September 10−14, 2006 id.E86

    [15]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar

    [16]

    Shell J R 2010 Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference Maui, HI, USA, September 14−17, 2010 p E42

    [17]

    Degnan J J 1993 Contributions of Space Geodesy to Geodynamics: Technology 25 133

    [18]

    Princeton Lightwave Inc. https://sphotonics.ru/upload/iblock/ 21c/pga_series_single_photon_counting_avalanche_photo- diode.pdf [2019-8-20]

    [19]

    Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. Chin. Phys. Mechanics & Astronomy 60 120314

    [20]

    Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y, Liu X Y, Wang Z, Xie X M 2016 Opt. Express 24 3535Google Scholar

    [21]

    Jorgensen K, Jarvis K S, Hamada K, Parr-Thumm T L, Africano J L, Stansbery E G 2003 Proc. of the 54th International Astronautical Congress Bremen, Germany, September 29−October 3, 2003 p1

    [22]

    Victoria M, Domínguez C, Askins S, Antón I, Sala G 2012 Jpn. J. Appl. Phys. AM15D 10ND06

    [23]

    杨福民, 肖炽焜, 陈婉珍, 张忠萍, 谭德同, 龚向东, 陈菊平, 黄力, 章建华 1998 中国科学(A辑) 28(11) 1048

    Yang F M, Xiao Z K, Chen W Z, Zhang Z P, Tan D T, Gong X D, Chen J P, Huang L, Zhang J H 1998 Sci. Chin. (Series A) 28(11) 1048

  • [1] 周飞, 陈奇, 刘浩, 戴越, 魏晨, 袁杭, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 张蜡宝, 吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化. 物理学报, 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [3] 廖晨, 姚宁, 唐路平, 施伟华, 孙少凌, 杨浩然. 基于硒化银量子点的近红外自组装激光器. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231457
    [4] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器. 物理学报, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [5] 沈姗姗, 顾国华, 陈钱, 何睿清, 曹青青. 时空域联合编码扩频单光子计数成像方法. 物理学报, 2023, 72(2): 024202. doi: 10.7498/aps.72.20221438
    [6] 廖晨, 姚宁, 唐路平, 施伟华, 孙少凌, 杨浩然. 基于Ag2Se量子点的近红外自组装激光器. 物理学报, 2023, 72(22): 224204. doi: 10.7498/aps.72.20231457
    [7] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制. 物理学报, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [8] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光. 百微米精度的单光子测距. 物理学报, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [9] 张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光. 高时间稳定性的雪崩光电二极管单光子探测器. 物理学报, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [10] 黄民双, 马鹏, 刘晓晨. 高频共振预探测多脉冲激光测距方法. 物理学报, 2018, 67(7): 074202. doi: 10.7498/aps.67.20172079
    [11] 白鹏, 张月蘅, 沈文忠. 半导体上转换单光子探测技术研究进展. 物理学报, 2018, 67(22): 221401. doi: 10.7498/aps.67.20180618
    [12] 李天信, 翁钱春, 鹿建, 夏辉, 安正华, 陈张海, 陈平平, 陆卫. 量子点操控的光子探测和圆偏振光子发射. 物理学报, 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [13] 肖标, 张敏莉, 王洪波, 刘继延. 基于窄带隙聚合物的高性能可见-近红外光伏探测器. 物理学报, 2017, 66(22): 228501. doi: 10.7498/aps.66.228501
    [14] 樊仲维, 邱基斯, 唐熊忻, 白振岙, 康治军, 葛文琦, 王昊成, 刘昊, 刘悦亮. 用于空间碎片探测的百赫兹3.31 J高光束质量全固态Nd:YAG激光器. 物理学报, 2017, 66(5): 054205. doi: 10.7498/aps.66.054205
    [15] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [16] 陈其杰, 周桂耀, 石富坤, 李端明, 苑金辉, 夏长明, 葛姝. 微结构光纤近红外色散波产生的研究. 物理学报, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [17] 王进, 魏正军, 王赓, 郭莉, 王金东, 张智明, 郭健平, 郭邦红, 刘颂豪. 数字平均对红外单光子探测器中温度控制系统信噪改善比的影响. 物理学报, 2013, 62(1): 014203. doi: 10.7498/aps.62.014203
    [18] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [19] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [20] 吴 光, 周春源, 陈修亮, 韩晓红, 曾和平. 长距离长期稳定的量子密钥分发系统. 物理学报, 2005, 54(8): 3622-3626. doi: 10.7498/aps.54.3622
计量
  • 文章访问数:  7517
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-27
  • 修回日期:  2019-10-16
  • 上网日期:  2019-12-13
  • 刊出日期:  2020-01-05

/

返回文章
返回