搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni(111)表面C原子吸附的密度泛函研究

袁健美 郝文平 李顺辉 毛宇亮

引用本文:
Citation:

Ni(111)表面C原子吸附的密度泛函研究

袁健美, 郝文平, 李顺辉, 毛宇亮

Density functional study on the adsorption of C atoms on Ni (111) surface

Yuan Jian-Mei, Hao Wen-Ping, Li Shun-Hui, Mao Yu-Liang
PDF
导出引用
  • 基于密度泛函理论的第一性原理计算,对过渡金属Ni晶体与Ni (111)表面的结构和电子性质进行了研究, 并探讨了单个C原子在过渡金属Ni (111)表面的吸附以及两个C原子在Ni(111)表面的共吸附. 能带和态密度计算表明, Ni晶体及Ni (111)表面在费米面处均存在显著的电子自旋极化. 通过比较Ni (111)表面各位点的吸附能,发现单个C原子在该表面最稳定的吸附位置为第二层Ni原子上方所在的六角密排洞位, 吸附的第二个C原子与它形成碳二聚物时最稳定吸附位为第三层Ni原子上方所在的面心立方洞位. 电荷分析表明,共吸附时从每个C原子上各有1.566e电荷转移至相邻的Ni原子, 与单个C原子吸附时C与Ni原子间的电荷转移量(1.68e)相当. 计算发现两个C原子共吸附时在六角密排洞位和面心立方洞位的磁矩分别为0.059B和 0.060B,其值略大于单个C原子吸附时所具有的磁矩(0.017B).
    With the density functional first-principles calculations, we investigate the structures and electronic properties of transition metal nickel and its (111) surface. The adsorption behavior of single C atom on Ni (111) surface and its co-adsorption with the another C atom on Ni (111) surface are studied. The calculations on band structure and density of states show that significant spin polarization exists at the Fermi level of both nickel and its (111) surface. By comparing the adsorption energy, we find that the hollow site of hexagonal close-packed on the second layer of Ni atoms is the most stable position for the first C atom adsorption, and the hollow site of face-centered cubic on the third layer of Ni atoms is the most stable site for the co-adsorption of second C atom. Charge analysis shows that 1.566e charge transfers from each C atom to the adjacent Ni atom, which is similar to the 1.68e charge transfer in the first C atom adsorption case. The calculations on magnetism show that the magnetic moments of the two C atoms in co-adsorption are 0.059B and 0.060B, respectively, which are larger than the magnetic moment 0.017B of single C atom in Ni (111) surface.
    • 基金项目: 国家自然科学基金(批准号: 11004166, 11101346)、 湖南省教育厅科学研究基金(批准号: 11B126, 10A117)和信息光子学与光通信国家重点实验室基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004166, 11101346), the Scientific Research Foundation of the Education Bureau of Hunan Province, China (Grant Nos. 11B126, 10A117), and the Foundation of State Key Laboratory of Information Photonics and Optical Communications, China.
    [1]

    Dong Y F, Feng Y P, Wang S J, Huan A C H 2005 Phys. Rev. B 72 045327

    [2]

    Hofmann S, Csányi G, Ferrari A C, Payne M C, Robertson J 2005 Phys. Rev. Lett. 95 36101

    [3]

    Hata K, Futaba D N, Mizuno K, Namai T, Yumura M, Iijima S 2004 Science 306 1362

    [4]

    Helveg S, López-Cartes C, Sehested J, Hansen P L, Clausen B S, Rostrup-Nielsen J R, Abild-Pedersen F, N{orskov J K 2004 Nature 427 426

    [5]

    Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier J C 2001 Phys. Rev. Lett. 87 275504

    [6]

    Amara H, Bichara C, Ducastelle F 2006 Phys. Rev. B 73 113404

    [7]

    Raty J Y, Gygi F, Galli G 2005 Phys. Rev. Lett. 95 096103

    [8]

    Yuan J M, Huang Y Q 2009 J. Mol. Struct. Theochem. 915 63

    [9]

    Yuan J M, Huang Y Q 2010 J. Mol. Struct. Theochem. 942 88

    [10]

    Yu Q K, Lian J, Siriponglert S, Li H, Chen Y P, Pei S S 2008 Appl. Phys. Lett. 93 113103

    [11]

    Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359

    [12]

    Varykhalov A, Sanchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O 2008 Phys. Rev. Lett. 101 157601

    [13]

    Usachov D, Dobrotvorskii A M, Varykhalov A, Rader O, Gudat W, Shikin A M, Adamchuk V K 2008 Phys. Rev. B 78 085403

    [14]

    He P L, Mao Y L, Sun L Z, Zhong J X 2010 J. Comput. Theor. Nanosci. 7 2063

    [15]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 物理学报 58 1924]

    [16]

    Liu Y L, Kong F J, Yang B W, Jiang G 2007 Acta Phys. Sin. 56 5413 (in Chinese) [刘以良, 孔凡杰, 杨缤维, 蒋刚 2007 物理学报 56 5413]

    [17]

    Dong C Q, An L, Yang Y P 2010 Renew. Energy Resour. 28 66 (in Chinese) [董长青, 安璐, 杨勇平 2010 可再生能源 28 66]

    [18]

    Sawada K, Ishii F, Saito M 2010 Phys. Rev. B 82 245426

    [19]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [20]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [21]

    Vanin M, Mortensen J J, Kelkkanen A K, Garcia-Lastra J M, Thygesen K S, Jacobsen K W 2010 Phys. Rev. B 81 081408

    [22]

    Fuentes-Cabrera M, Baskes M I, Melechko A V, Simpson M L 2008 Phys. Rev. B 77 035405

    [23]

    Perdew J 1996 Phys. Rev. Lett. 77 3865

    [24]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [25]

    Hodges L, Ehrenreich H, Lang N D 1966 Phys. Rev. 152 505

    [26]

    Mao Y L, Yuan J M, Zhong J X 2008 J. Phys.: Condens. Matter 20 115209

    [27]

    Zhao X X, Tao X M, Chen W B, Chen X, Shang X F, Tan M Q 2006 Acta Phys. Sin. 55 3629 (in Chinese) [赵新新, 陶向明, 陈文彬, 陈鑫, 尚学府, 谭明秋 2006 物理学报 55 3629]

    [28]

    Yang S, Garrison K, Bartynski R A 1991 Phys. Rev. B 43 2025

    [29]

    Tersoff J, Falicov L M 1982 Phys. Rev. B 26 6186

    [30]

    Klinke II D J, Wilke S, Broadbelt L J 1998 J. Catal. 178 540

    [31]

    Burghgraef H, Jansen A P J, van Santen R A 1995 Surf. Sci. 324 345

    [32]

    Zhang Q M, Wells J C, Gong X G, Zhang Z Y 2004 Phys. Rev. B 69 205413

    [33]

    Amara H, Bichara C, Ducastelle F 2006 Phys. Rev. B 73 113404

    [34]

    Shin Y H, Hong S 2008 Appl. Phys. Lett. 92 043103

  • [1]

    Dong Y F, Feng Y P, Wang S J, Huan A C H 2005 Phys. Rev. B 72 045327

    [2]

    Hofmann S, Csányi G, Ferrari A C, Payne M C, Robertson J 2005 Phys. Rev. Lett. 95 36101

    [3]

    Hata K, Futaba D N, Mizuno K, Namai T, Yumura M, Iijima S 2004 Science 306 1362

    [4]

    Helveg S, López-Cartes C, Sehested J, Hansen P L, Clausen B S, Rostrup-Nielsen J R, Abild-Pedersen F, N{orskov J K 2004 Nature 427 426

    [5]

    Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier J C 2001 Phys. Rev. Lett. 87 275504

    [6]

    Amara H, Bichara C, Ducastelle F 2006 Phys. Rev. B 73 113404

    [7]

    Raty J Y, Gygi F, Galli G 2005 Phys. Rev. Lett. 95 096103

    [8]

    Yuan J M, Huang Y Q 2009 J. Mol. Struct. Theochem. 915 63

    [9]

    Yuan J M, Huang Y Q 2010 J. Mol. Struct. Theochem. 942 88

    [10]

    Yu Q K, Lian J, Siriponglert S, Li H, Chen Y P, Pei S S 2008 Appl. Phys. Lett. 93 113103

    [11]

    Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359

    [12]

    Varykhalov A, Sanchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O 2008 Phys. Rev. Lett. 101 157601

    [13]

    Usachov D, Dobrotvorskii A M, Varykhalov A, Rader O, Gudat W, Shikin A M, Adamchuk V K 2008 Phys. Rev. B 78 085403

    [14]

    He P L, Mao Y L, Sun L Z, Zhong J X 2010 J. Comput. Theor. Nanosci. 7 2063

    [15]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 物理学报 58 1924]

    [16]

    Liu Y L, Kong F J, Yang B W, Jiang G 2007 Acta Phys. Sin. 56 5413 (in Chinese) [刘以良, 孔凡杰, 杨缤维, 蒋刚 2007 物理学报 56 5413]

    [17]

    Dong C Q, An L, Yang Y P 2010 Renew. Energy Resour. 28 66 (in Chinese) [董长青, 安璐, 杨勇平 2010 可再生能源 28 66]

    [18]

    Sawada K, Ishii F, Saito M 2010 Phys. Rev. B 82 245426

    [19]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [20]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [21]

    Vanin M, Mortensen J J, Kelkkanen A K, Garcia-Lastra J M, Thygesen K S, Jacobsen K W 2010 Phys. Rev. B 81 081408

    [22]

    Fuentes-Cabrera M, Baskes M I, Melechko A V, Simpson M L 2008 Phys. Rev. B 77 035405

    [23]

    Perdew J 1996 Phys. Rev. Lett. 77 3865

    [24]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [25]

    Hodges L, Ehrenreich H, Lang N D 1966 Phys. Rev. 152 505

    [26]

    Mao Y L, Yuan J M, Zhong J X 2008 J. Phys.: Condens. Matter 20 115209

    [27]

    Zhao X X, Tao X M, Chen W B, Chen X, Shang X F, Tan M Q 2006 Acta Phys. Sin. 55 3629 (in Chinese) [赵新新, 陶向明, 陈文彬, 陈鑫, 尚学府, 谭明秋 2006 物理学报 55 3629]

    [28]

    Yang S, Garrison K, Bartynski R A 1991 Phys. Rev. B 43 2025

    [29]

    Tersoff J, Falicov L M 1982 Phys. Rev. B 26 6186

    [30]

    Klinke II D J, Wilke S, Broadbelt L J 1998 J. Catal. 178 540

    [31]

    Burghgraef H, Jansen A P J, van Santen R A 1995 Surf. Sci. 324 345

    [32]

    Zhang Q M, Wells J C, Gong X G, Zhang Z Y 2004 Phys. Rev. B 69 205413

    [33]

    Amara H, Bichara C, Ducastelle F 2006 Phys. Rev. B 73 113404

    [34]

    Shin Y H, Hong S 2008 Appl. Phys. Lett. 92 043103

  • [1] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [2] 曹青松, 邓开明. X@C20F20(X=He,Ne,Ar,Kr)几何结构和 电子结构的理论研究. 物理学报, 2016, 65(5): 056102. doi: 10.7498/aps.65.056102
    [3] 贺艳斌, 贾建峰, 武海顺. N2H4在NiFe(111)合金表面吸附稳定性和电子结构的第一性原理研究. 物理学报, 2015, 64(20): 203101. doi: 10.7498/aps.64.203101
    [4] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究. 物理学报, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [5] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究. 物理学报, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [6] 曹青松, 袁勇波, 肖传云, 陆瑞锋, 阚二军, 邓开明. C80H80几何结构和电子性质的密度泛函研究. 物理学报, 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [7] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究. 物理学报, 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [8] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究. 物理学报, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [9] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究. 物理学报, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [10] 张建军, 张红. Al吸附在Pt, Ir和Au的(111)面的低覆盖度研究. 物理学报, 2010, 59(6): 4143-4149. doi: 10.7498/aps.59.4143
    [11] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [12] 张秀荣, 高从花, 吴礼清, 唐会帅. WnNim(n+m≤7; m=1, 2)团簇电子结构与光谱性质的理论研究. 物理学报, 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [13] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究. 物理学报, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [14] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究. 物理学报, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [15] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [16] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究. 物理学报, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [17] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究. 物理学报, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [18] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [19] 唐春梅, 朱卫华, 邓开明. 内掺过渡金属富勒烯衍生物Ni@C20H20几何结构、成键和电磁性质的密度泛函计算研究. 物理学报, 2009, 58(7): 4567-4572. doi: 10.7498/aps.58.4567
    [20] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
计量
  • 文章访问数:  7589
  • PDF下载量:  1144
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-27
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

/

返回文章
返回