Magnetism of MgO nanoparticles
Fan Wei, Zeng Zhi
Key Laborarory of Materials Physics, Institute of Solid-State Phyics, Hefei Institutes of Hefei Physical Science, Chinese Academy of Science, Hefei 230031, China
Abstract MgO polycrystal is found to be weakly magnetic experimentally, although its single crystal is non magnetic. In this work, the magnetic properties of surfaces of crystal and nano-particles of MgO are studied by the first-principles density functional theory. The obtained results show that there are the oxygen-rich regions in all the magnetic surfaces discussed in this work, especially in the (111) surface with pure oxygen layer and the (114) surface with pure oxygen chains. Other surfaces with high Miller indices generally have the oxygen-rich regions. For MgO nano-particles, the facets with high Miller indices and the edges and vertexes formed by different orientation surfaces are oxygen-rich possibly and have strong magnetism. The itinerant magnetism is indentified for the magnetism on the surfaces of MgO crystal and the surfaces of MgO nano-particles. That the special MgO ∑ 7[111] grain boundary is not magnetic means that the magnetism of MgO grain boundary is weak if the chemical composition in grain-boundary region is slightly different from that in the crystal. It can be inferred that the magnetism of MgO polycrystal is mainly contributed by the polycrystal surface, the micro-pores, micro-voids and micro-cracks.
Key words :
magnesium oxide
nanopaticles
surface magnetism
first-principles calculation of electronic structure
Received: 2013-09-21
PACS:
75.70.Rf
(Surface magnetism)
75.75.Lf
(Electronic structure of magnetic nanoparticles)
61.46.Df
(Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))
61.46.Bc
(Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB933702), the National Natural Science Foundation of China (Grant No. 11174284), and the Key Program of Joint Funds of the National Natural Science Foundation of China (Grant No. U1230202).
Corresponding Authors:
范巍
E-mail: fan@theory.issp.ac.cn
References
[1] Sundaresan A, Rao C N R 2009 Nano Today 4 96
[2] Rehman S, Mumtaz A, Hasanain S K 2011 J. Nanopart. Res. 13 2497
[3] Venkatesan M, Fitzgerald C B, Coey J M D 2004 Nature 430 630
[4] Sundaresan A, Rao C N R 2009 Solid State Commun. 149 1197
[5] Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C N R 2006 Phys. Rev. B 74 161306(R)
[6] Hong N H, Sakai J, Poirot N, Brizé V 2006 Phys. Rev. B 73 132404
[7] Khalid M, Setzer A, Ziese M, Esquinazi P, Spemann D, Pöppl A, Goering E 2010 Phys. Rev. B 81 214414
[8] Martínez-Boubeta C, Beltrán J I, Balcells L L, Konstantinović Z, Valencia S, Schmitz D, Arbiol J, Estrade S, Cornil J, Martínez B 2010 Phys. Rev. B 82 024405
[9] Maoz B M, Tirosh E, Sadan M B, Markovich G 2011 Phys. Rev. B 83 161201(R)
[10] Osorio-Guillén J, Lany S, Barabash S V, Zunger A 2006 Phys. Rev. Lett. 96 107203
[11] Pemmaraju C D, Sanvito S 2005 Phys. Rev. Lett. 94 217205
[12] Baranek P, Pinarello G, Pisani C, Dovesi R 2000 Phys. Chem. Chem. Phys. 2 3893
[13] Shipra, Gomathi A, Sundaresan A, Rao C N R 2007 Solid State Commun. 142 685
[14] Hasanain S K, Akhtar N, Mumtaz A 2011 J. Nanopart. Res. 13 1953
[15] Zhu Z H, Gao D Q, Dong C H, Yang G J, Zhang J, Zhang J L, Shi Z H, Gao H, Luo H G, Xue D S 2012 Phys. Chem. Phys. 14 3859
[16] Baqiya M A, Widodo H, Rochmawati L, Darminito, Adachi T, Koike Y 2012 AIP Conf. Proc. 1454 260
[17] Fan W, Zou L J, Zeng Z 2013 Physica C 492 80
[18] Fan W, Zeng Z 2011 Physica C 471 1606
[19] Yang P D, Lieber C M 1996 Science 273 1836
[20] Fang X S, Ye C H, Xie T, Wang Z Y, Zhao J W, Zhang L D 2006 Appl. Phys. Lett. 88 013101
[21] Chen L, Xu C, Zhang X F 2009 Acta Phys. Sin. 58 1603 [陈亮, 徐灿, 张小芳 2009 物理学报 58 1603]
[22] Chen H S, Chen H J 2011 Acta Phys. Sin. 60 073601 [陈宏善, 陈华君 2011 物理学报 60 073601]
[23] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Sutton A P, Balluffi R W 1995 Interface in Crystalline Materials (Oxford: Clarendon Press)
[27] Balluffi R W 1982 Metall. Trans. B 13 527
[28] Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009 Phys. Rev. B 80 144424
[29] Plass R, Egan K, Collazo-Davila C, Grozea D, Landree E, Marks L D, Gajdardziska-Josifovska M 1998 Phys. Rev. Lett. 81 4891
[30] Gunnarsson O 1976 J. Phys. F: Metal. Phys. 6 587
[31] Ge G X, Luo Y H 2008 Acta Phys. Sin. 57 4851 (in Chinese) [葛桂贤, 罗有华 2008 物理学报 57 4851]
[32] Zhang T, Fang Y Z, Dressel M, Wang X P, Fang Q F 2010 J. Appl. Phys. 108 113901
[33] Han X F 2008 Physics 37 398 [韩秀峰 2008 物理 37 398]
[34] Li Y B, Wei F L, Yang Z 2009 Physics 38 420 [李彦波, 魏福林, 杨正 2009 物理 38 420]
[35] Iida K, Hänisch J, Trommler S, Haindl S, Kurth F, Hühne R, Schultz L, Holzapfel B 2011 Supercond. Sci. Technol. 24 125009
[36] Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653
[1]
Xu Rong, Jia Guang-Yi, Liu Chang-Long. Synthesis of nanoparticles in SiO2 by implantation with Cu and Zn ions and their thermal stability in oxygen atmoshphere [J]. Acta Phys. Sin, 2014, 63(7): 078501.
[2]
Wang Qing-Ru, Li Shu-Hong, Shi Qiang, Wang Wen-Jun. Influences of gold/silver nanoparticles on fluorescence of europium-doped films [J]. Acta Phys. Sin, 2014, 63(5): 057802.
[3]
Li Sheng-Kun, Tang Jun, Mao Hong-Qing, Wang Ming-Huan, Chen Guo-Bin, Zhai Chao, Zhang Xiao-Ming, Shi Yun-Bo, Liu Jun. Effect of magnetic capacitance in the Fe3 O4 nanopartides and polydimethylsiloxane composite material [J]. Acta Phys. Sin, 2014, 63(5): 057501.
[4]
Pan Xiao-Jun, An Xiu-Yun, Zhang Hai-Jun, Zhang Zhen-Xing, Xie Er-Qing. Optical properties of GaN:Tb nanoparticles synthesized by simple ammonification method [J]. Acta Phys. Sin, 2013, 62(3): 037105.
[5]
Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle [J]. Acta Phys. Sin, 2013, 62(2): 026501.
[6]
Li Yong, Li Hui-Qi, Xia Yang, Liu Bang-Wu. Study on atomic layer deposition preparation of core-shell structured nanometer materials [J]. Acta Phys. Sin, 2013, 62(19): 198102.
[7]
Li Rao, Zhu Ya-Bin, Di Yue, Liu Dong-Xue, Li Bing, Zhong Wei. Fabrication of ordered Au nanoparticles array and its optical absorption properties [J]. Acta Phys. Sin, 2013, 62(19): 198101.
[8]
Sun Wei-Feng, Wang Xuan. Molecular dynamics simulation study of polyimide/copper-nanoparticle composites [J]. Acta Phys. Sin, 2013, 62(18): 186202.
[9]
Zhou Zhen-Ting, Yang Li, Yao Jie, Ye Ran, Xu Huan-Huan, Ye Yong-Hong. Fabrication of multilayer metal-dielectric nanoparticles and their optical properties [J]. Acta Phys. Sin, 2013, 62(18): 188104.
[10]
Luo Yi, Zhao Guo-Ping, Yang Hai-Tao, Song Ning-Ning, Ren Xiao, Ding Hao-Feng, Cheng Zhao-Hua. Exchange bias effect in single crystalline phase MnO nanoparticles [J]. Acta Phys. Sin, 2013, 62(17): 176102.
[11]
Pan Shu-Wan, Chen Song-Yan, Zhou Bi, Huang Wei, Li Cheng, Lai Hong-Kai, Wang Jia-Xian. Photoluminescence properties of selenium nanocrystals on Si(100) substrate formed by rapid thermal annealing [J]. Acta Phys. Sin, 2013, 62(17): 177802.
[12]
Lu Nai-Yan, Yuan Bing, Yang Kai. Nonspecific adsorption of charged mesoporous nanoparticles on supported thiol/lipid hybrid bilayers [J]. Acta Phys. Sin, 2013, 62(17): 178701.
[13]
Liu Dong-Qi, Chang Yan-Chun, Liu Gang-Qin, Pan Xin-Yu. Electron spin studies of nitrogen vacancy centers in nanodiamonds [J]. Acta Phys. Sin, 2013, 62(16): 164208.
[14]
Li Lin, Wang Xuan, Sun Wei-Feng, Lei Qing-Quan. Molecular dynamics simulation of polyethylene/silver-nanoparticle composites [J]. Acta Phys. Sin, 2013, 62(10): 106201.
[15]
Huang Xiao-Lin, Hou Li-Zhen, Yu Bo-Wen, Chen Guo-Liang, Wang Shi-Liang, Ma Liang, Liu Xin-Li, He Yue-Hui. Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures [J]. Acta Phys. Sin, 2013, 62(10): 108102.