搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类带自相容源的sine-Gordon方程新的显式精确解

苏军 徐伟 段东海 徐根玖

一类带自相容源的sine-Gordon方程新的显式精确解

苏军, 徐伟, 段东海, 徐根玖
PDF
导出引用
  • 文章研究了一类带自相容源的sine-Gordon方程(SGESCSs),利用广义双Darboux变换法,得到了该方程的complexiton解,进一步丰富了这类方程的解.
    • 基金项目: 国家自然科学基金(批准号:10932009, 10872165, 11002110)和陕西省自然科学基础研究计划(批准号:2010JQ1015)资助的课题.
    [1]

    Melnikov V K 1990 Inverse Probl. 6 233

    [2]

    Leon J, Latifi A 1990 J. Phys. A 23 1385

    [3]
    [4]

    Melnikov V K 1983 Lett. Math. Phys. 7 129

    [5]
    [6]
    [7]

    Zakharov V E, Kuznetsov E A 1986 Physica. D 18 455

    [8]

    Melnikov V K 1992 Inverse Probl. 8 133

    [9]
    [10]
    [11]

    Doktorov E V, Vlasov R A 1983 Opt. Acta 30 223

    [12]

    Claude C, Latifi A, Leon J 1991 J. Math. Phys. 32 3321

    [13]
    [14]
    [15]

    Lin R L, Zeng Y B, Ma W X 2001 Physica A 291 287

    [16]
    [17]

    Zeng Y B, Ma W X, Shao Y J 2001 J. Math. Phys. 42 2113

    [18]
    [19]

    Zeng Y B, Shao Y J, Xue W M 2003 J. Phys. A: Math. Phys. 36 5035

    [20]
    [21]

    Xiao T, Zeng Y B 2004 J. Phys. A: Math. Phys. 37 7143

    [22]

    Ma W X 2005 Chaos, Sol. Fract. 26 1453

    [23]
    [24]
    [25]

    Liu X J, Zeng Y B 2005 J. Phys. A: Math. Phys. 38 8951

    [26]

    Shao Y J, Zeng Y B 2005 J. Phys. A: Math. Phys. 38 2441

    [27]
    [28]

    Hu X B, Wang H Y 2006 Inverse Probl. 22 1903

    [29]
    [30]
    [31]

    Wang H Y, Hu X B, Tam H W 2007 J. Nonlinear Math. Phys. 14 258

    [32]
    [33]

    Wang H Y, Hu X B, Tam H W 2007 J. Phys. Soc. Jpn. 76 024007

    [34]
    [35]

    Wang H Y, Hu X B 2007 Soliton Equations with Self-consistent Sources (Beijing: Tsinghua University Press) (in Chinese) [王 红艳、胡星标 2007 带自相容源的孤立子方程(北京: 清华大学出版社)]

    [36]
    [37]

    Hu X B 1991 J. Phys. A 24 5489

    [38]

    Hu X B 1996 Chaos, Sol. Fract. 7 211

    [39]
    [40]
    [41]

    Zhang D J 2002 J. Phys. Soc. Jpn. 71 2649

    [42]

    Zhang D J, Chen D Y 2003 Physica A 321 467

    [43]
    [44]
    [45]

    Deng S F, Chen D Y, Zhang D J 2003 J. Phys. Soc. Jpn. 72 2184

    [46]

    Wang H, Li B 2011 Chin. Phys. B 20 040203

    [47]
    [48]

    Beutler R 1993 J. Math. Phys. 34 3098

    [49]
    [50]
    [51]

    Andreev V A, Brezhnev Y V 1995 Phys. Lett. A 207 58

    [52]
    [53]

    He H S, Chen J, Yang K Q 2005 Chin. Phys. 14 1926

    [54]
    [55]

    Hu H C, Lou S Y 2005 Phys. Lett. A 341 422

    [56]
    [57]

    Zhang Q, Yue P, Gong L X 2006 Chin. Phys. 15 35

    [58]

    Wu H X, Fan T Y 2007 Physica A 379 471

    [59]
    [60]
    [61]

    Zhang J W, Wang D X, Wu R H 2008 Acta Phys. Sin. 57 2021 (in Chinese) [张建文、王旦霞、吴润衡 2008 物理学报 57 2021]

    [62]

    Mo J Q 2009 Acta Phys. Sin. 58 2930 (in Chinese) [莫嘉琪 2009 物理学报 58 2930]

    [63]
    [64]

    Piette B, Zakrzewski W J 2009 Phys. Rev. E 79 046603

    [65]
  • [1]

    Melnikov V K 1990 Inverse Probl. 6 233

    [2]

    Leon J, Latifi A 1990 J. Phys. A 23 1385

    [3]
    [4]

    Melnikov V K 1983 Lett. Math. Phys. 7 129

    [5]
    [6]
    [7]

    Zakharov V E, Kuznetsov E A 1986 Physica. D 18 455

    [8]

    Melnikov V K 1992 Inverse Probl. 8 133

    [9]
    [10]
    [11]

    Doktorov E V, Vlasov R A 1983 Opt. Acta 30 223

    [12]

    Claude C, Latifi A, Leon J 1991 J. Math. Phys. 32 3321

    [13]
    [14]
    [15]

    Lin R L, Zeng Y B, Ma W X 2001 Physica A 291 287

    [16]
    [17]

    Zeng Y B, Ma W X, Shao Y J 2001 J. Math. Phys. 42 2113

    [18]
    [19]

    Zeng Y B, Shao Y J, Xue W M 2003 J. Phys. A: Math. Phys. 36 5035

    [20]
    [21]

    Xiao T, Zeng Y B 2004 J. Phys. A: Math. Phys. 37 7143

    [22]

    Ma W X 2005 Chaos, Sol. Fract. 26 1453

    [23]
    [24]
    [25]

    Liu X J, Zeng Y B 2005 J. Phys. A: Math. Phys. 38 8951

    [26]

    Shao Y J, Zeng Y B 2005 J. Phys. A: Math. Phys. 38 2441

    [27]
    [28]

    Hu X B, Wang H Y 2006 Inverse Probl. 22 1903

    [29]
    [30]
    [31]

    Wang H Y, Hu X B, Tam H W 2007 J. Nonlinear Math. Phys. 14 258

    [32]
    [33]

    Wang H Y, Hu X B, Tam H W 2007 J. Phys. Soc. Jpn. 76 024007

    [34]
    [35]

    Wang H Y, Hu X B 2007 Soliton Equations with Self-consistent Sources (Beijing: Tsinghua University Press) (in Chinese) [王 红艳、胡星标 2007 带自相容源的孤立子方程(北京: 清华大学出版社)]

    [36]
    [37]

    Hu X B 1991 J. Phys. A 24 5489

    [38]

    Hu X B 1996 Chaos, Sol. Fract. 7 211

    [39]
    [40]
    [41]

    Zhang D J 2002 J. Phys. Soc. Jpn. 71 2649

    [42]

    Zhang D J, Chen D Y 2003 Physica A 321 467

    [43]
    [44]
    [45]

    Deng S F, Chen D Y, Zhang D J 2003 J. Phys. Soc. Jpn. 72 2184

    [46]

    Wang H, Li B 2011 Chin. Phys. B 20 040203

    [47]
    [48]

    Beutler R 1993 J. Math. Phys. 34 3098

    [49]
    [50]
    [51]

    Andreev V A, Brezhnev Y V 1995 Phys. Lett. A 207 58

    [52]
    [53]

    He H S, Chen J, Yang K Q 2005 Chin. Phys. 14 1926

    [54]
    [55]

    Hu H C, Lou S Y 2005 Phys. Lett. A 341 422

    [56]
    [57]

    Zhang Q, Yue P, Gong L X 2006 Chin. Phys. 15 35

    [58]

    Wu H X, Fan T Y 2007 Physica A 379 471

    [59]
    [60]
    [61]

    Zhang J W, Wang D X, Wu R H 2008 Acta Phys. Sin. 57 2021 (in Chinese) [张建文、王旦霞、吴润衡 2008 物理学报 57 2021]

    [62]

    Mo J Q 2009 Acta Phys. Sin. 58 2930 (in Chinese) [莫嘉琪 2009 物理学报 58 2930]

    [63]
    [64]

    Piette B, Zakrzewski W J 2009 Phys. Rev. E 79 046603

    [65]
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2583
  • PDF下载量:  685
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-13
  • 修回日期:  2011-06-03
  • 刊出日期:  2011-11-15

一类带自相容源的sine-Gordon方程新的显式精确解

  • 1. 西北工业大学理学院,西安 710072;
  • 2. 渭南师范学院数学与信息科学学院,渭南 714000
    基金项目: 

    国家自然科学基金(批准号:10932009, 10872165, 11002110)和陕西省自然科学基础研究计划(批准号:2010JQ1015)资助的课题.

摘要: 文章研究了一类带自相容源的sine-Gordon方程(SGESCSs),利用广义双Darboux变换法,得到了该方程的complexiton解,进一步丰富了这类方程的解.

English Abstract

参考文献 (65)

目录

    /

    返回文章
    返回