搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用交叉相位调制和四波混频制作的时间透镜的仿真分析

李博 谭中伟 张晓兴

利用交叉相位调制和四波混频制作的时间透镜的仿真分析

李博, 谭中伟, 张晓兴
PDF
导出引用
导出核心图
  • 利用高非线性光纤中的交叉相位调制和四波混频分别在仿真中实现了时间透镜. 对基于交叉相位调制的时间透镜中的高非线性光纤中的非线性过程进行了仿真分析. 仿真结果表明, 该时间透镜的主要影响因素为色散、自相位调制与四波混频; 通过采用带有一定色散斜率的高非线性光纤可同时消除色散、自相位调制和四波混频的影响; 另外, 该高非线性光纤的色散零点最好选在信号脉冲和抽运脉冲波长的中心附近. 然后对基于四波混频的时间透镜的实现进行了仿真分析. 仿真结果表明, 该时间透镜的主要影响因素为色散、 自相位调制和其他的四波混频; 通过设定合适大小的信号脉冲和抽运脉冲的功率可消除自相位调制和其他的四波混频的影响; 另外, 通过在高非线性光纤中引入一定的色散可进一步提高信号脉冲和抽运脉冲的功率, 从而获得更高功率的输出脉冲. 最后对两种时间透镜系统做出了比较.
    • 基金项目: 国家自然科学基金(批准号: 60607001)和北京交通大学科研基金(批准号: 2009JBM011)资助的课题.
    [1]

    Kolner B H, Nazarathy M 1989 Opt. Lett. 14 630

    [2]

    Kolner B H, Nazarathy M 1990 Opt. Lett. 15 655

    [3]

    Bennett C V, Scott R P, Kolner B H 1994 Appl. Phys. Lett. 65 2513

    [4]

    Kauffman M T, Banyai W C, Godil A A, Bloom D M 1994 Appl. Phys. Lett. 64 270

    [5]

    Jannson T 1983 Opt. Lett. 8 232

    [6]

    Nakazawa M, Hirooka T 2005 J. Opt. Soc. Am. B 22 1842

    [7]

    Howe J V, Hansryd J, Xu C 2004 Opt. Lett. 29 1470

    [8]

    Torres-Company V, Chen L R 2009 Opt. Express 17 22553

    [9]

    Kolner B H 1988 Appl. Phys. Lett. 52 1122

    [10]

    Tan Z W, Zhou N, Chen M, Gong T R, Ren W H, Tao P L, Chang Y L, Jian S S 2009 Communications and Photonics Conference and Exhibition Shanghai, China, November 2–6, 2009 763111-1

    [11]

    Bennett C V, Kolner B H 2000 IEEE J. Quantum Electron. 36 430

    [12]

    Bennett C V, Moran B D, Langrock C, Fejer M M, Ibsen M 2008 Conference on Lasers and Electro-Optics San Jose, CA May 4–9, 2008 1272

    [13]

    Ng T T, Parmigiani F, Ibsen M, Zhang Z, Petropoulos P, Richardson D J 2007 Optical Fibre Communication and the National fiber Engineers Conference Anaheim, USA, March 25–29, 2007 JWA58

    [14]

    Ng T T, Parmigiani F, Ibsen M, Zhang Z W, Petropoulos P, Richardson D J 2008 IEEE Photon. Tech. Lett. 20 10971099

    [15]

    Salem R, FosterMA, Turner A C, Geraghty D F, Lipson M, Gaeta A L 2008 Opt. Lett. 33 1047

    [16]

    Hirooka T, Nakazawa M 2008 IEEE Photon. Tech. Lett. 20 1869

    [17]

    Agrawal G P (Translated by Jia D F, Yu Z H) 2002 Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) pp64–67 (in Chinese) [阿加瓦尔G P著, 贾东方, 余震虹译 2002 非线性光纤光学原理及应用 (北京: 电子工业出版社) 第64-67页]

    [18]

    Kolner B H 1994 IEEE J. Quantum Electron. 30 1951

    [19]

    Azaña J 2005 IEEE Photon. Technol. Lett. 17 94

    [20]

    Bennett C V 1999 Opt. Lett. 24 783

    [21]

    Li B, Tan Z W, Zhang X X 2011 Acta Phys. Sin. 60 084204 (in Chinese) [李博, 谭中伟, 张晓兴 2011 物理学报 60 084204]

    [22]

    Hiroishi J, Kumanu N, Sugizaki R 2003 China Patent CN1410787 [广石治郎, 熊野尚美, 杉崎隆一 2003 中国专利 CN1410787]

    [23]

    Salem R, FosterMA, Turner A C, Geraghty D F, Lipson M, Gaeta A L 2008 Opt. Lett. 33 1047

    [24]

    Foster M A, Salem R, Okawachi Y, Turner-Foster A C, Lipson M, Gaeta A L 2009 Nature Photonics 3 581

  • [1]

    Kolner B H, Nazarathy M 1989 Opt. Lett. 14 630

    [2]

    Kolner B H, Nazarathy M 1990 Opt. Lett. 15 655

    [3]

    Bennett C V, Scott R P, Kolner B H 1994 Appl. Phys. Lett. 65 2513

    [4]

    Kauffman M T, Banyai W C, Godil A A, Bloom D M 1994 Appl. Phys. Lett. 64 270

    [5]

    Jannson T 1983 Opt. Lett. 8 232

    [6]

    Nakazawa M, Hirooka T 2005 J. Opt. Soc. Am. B 22 1842

    [7]

    Howe J V, Hansryd J, Xu C 2004 Opt. Lett. 29 1470

    [8]

    Torres-Company V, Chen L R 2009 Opt. Express 17 22553

    [9]

    Kolner B H 1988 Appl. Phys. Lett. 52 1122

    [10]

    Tan Z W, Zhou N, Chen M, Gong T R, Ren W H, Tao P L, Chang Y L, Jian S S 2009 Communications and Photonics Conference and Exhibition Shanghai, China, November 2–6, 2009 763111-1

    [11]

    Bennett C V, Kolner B H 2000 IEEE J. Quantum Electron. 36 430

    [12]

    Bennett C V, Moran B D, Langrock C, Fejer M M, Ibsen M 2008 Conference on Lasers and Electro-Optics San Jose, CA May 4–9, 2008 1272

    [13]

    Ng T T, Parmigiani F, Ibsen M, Zhang Z, Petropoulos P, Richardson D J 2007 Optical Fibre Communication and the National fiber Engineers Conference Anaheim, USA, March 25–29, 2007 JWA58

    [14]

    Ng T T, Parmigiani F, Ibsen M, Zhang Z W, Petropoulos P, Richardson D J 2008 IEEE Photon. Tech. Lett. 20 10971099

    [15]

    Salem R, FosterMA, Turner A C, Geraghty D F, Lipson M, Gaeta A L 2008 Opt. Lett. 33 1047

    [16]

    Hirooka T, Nakazawa M 2008 IEEE Photon. Tech. Lett. 20 1869

    [17]

    Agrawal G P (Translated by Jia D F, Yu Z H) 2002 Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) pp64–67 (in Chinese) [阿加瓦尔G P著, 贾东方, 余震虹译 2002 非线性光纤光学原理及应用 (北京: 电子工业出版社) 第64-67页]

    [18]

    Kolner B H 1994 IEEE J. Quantum Electron. 30 1951

    [19]

    Azaña J 2005 IEEE Photon. Technol. Lett. 17 94

    [20]

    Bennett C V 1999 Opt. Lett. 24 783

    [21]

    Li B, Tan Z W, Zhang X X 2011 Acta Phys. Sin. 60 084204 (in Chinese) [李博, 谭中伟, 张晓兴 2011 物理学报 60 084204]

    [22]

    Hiroishi J, Kumanu N, Sugizaki R 2003 China Patent CN1410787 [广石治郎, 熊野尚美, 杉崎隆一 2003 中国专利 CN1410787]

    [23]

    Salem R, FosterMA, Turner A C, Geraghty D F, Lipson M, Gaeta A L 2008 Opt. Lett. 33 1047

    [24]

    Foster M A, Salem R, Okawachi Y, Turner-Foster A C, Lipson M, Gaeta A L 2009 Nature Photonics 3 581

  • [1] 李博, 娄淑琴, 谭中伟, 苏伟. 两种基于交叉相位调制的光脉冲压缩方案 . 物理学报, 2012, 61(19): 194203. doi: 10.7498/aps.61.194203
    [2] 李博, 谭中伟, 张晓兴. 利用电光相位调制和交叉相位调制制作时间透镜的实验及仿真分析. 物理学报, 2011, 60(8): 084204. doi: 10.7498/aps.60.084204
    [3] 曹亚敏, 武保剑, 万峰, 邱昆. 四波混频光相位运算器原理及其噪声性能研究. 物理学报, 2018, 67(9): 094208. doi: 10.7498/aps.67.20172638
    [4] 黄德修, 张新亮, 李培丽. 基于PolSK调制的四波混频型超快全光译码器. 物理学报, 2009, 58(3): 1785-1792. doi: 10.7498/aps.58.1785
    [5] 肖鸿晶, 黄超, 唐玉龙, 徐剑秋. 基于时间透镜系统的冲击脉冲产生与特性研究. 物理学报, 2019, 68(15): 154201. doi: 10.7498/aps.68.20190246
    [6] 陈海涛, 夏光琼, 吴正茂. 基于脉冲对的交叉相位调制脉冲压缩中离散效应的抑制. 物理学报, 2005, 54(3): 1167-1171. doi: 10.7498/aps.54.1167
    [7] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇. 基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量. 物理学报, 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [8] 唐向宏, 朱海东, 李承家, 王小军, 李齐良, 林理彬. 有源光放大器链路中交叉相位调制的不稳定性. 物理学报, 2004, 53(12): 4194-4201. doi: 10.7498/aps.53.4194
    [9] 向望华, 陈晓伟, 谈斌, 张贵忠. 利用单模光纤中的交叉相位调制产生单周期化脉冲的研究. 物理学报, 2004, 53(1): 137-144. doi: 10.7498/aps.53.137
    [10] 邓 莉, 孙真荣, 林位株, 文锦辉. 亚10 fs激光脉冲产生中的受激拉曼散射与四波混频效应. 物理学报, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [11] 王彦斌, 侯静, 陆启生, 彭杨, 陈子伦, 熊春乐. 长脉冲抽运光子晶体光纤四波混频和超连续谱的理论研究. 物理学报, 2011, 60(1): 014201. doi: 10.7498/aps.60.014201
    [12] 李建设, 李曙光, 赵原源, 韩颖, 陈海良, 韩晓明, 周桂耀. 在远离光子晶体光纤零色散波长的正常色散区入射飞秒脉冲产生四波混频及孤子效应的实验研究. 物理学报, 2014, 63(16): 164206. doi: 10.7498/aps.63.164206
    [13] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究. 物理学报, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [14] 于晋龙, 胡 浩, 张爱旭, 张立台, 王文睿, 杨恩泽, 江 阳. 信号光的调制对基于光纤光参量放大光脉冲源的改善. 物理学报, 2008, 57(5): 2994-3000. doi: 10.7498/aps.57.2994
    [15] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演. 物理学报, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [16] 吴建伟, 夏光琼, 吴正茂. 基于半导体光放大器和非线性光纤环镜的光脉冲压缩器的设计模型和理论分析. 物理学报, 2004, 53(4): 1105-1109. doi: 10.7498/aps.53.1105
    [17] 步 扬, 王向朝. 基于频域相位共轭技术的交叉相位调制所致失真的复原. 物理学报, 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [18] 朱坤占, 贾维国, 张魁, 于宇, 张俊萍, 门克内木乐. 在反常色散区艾里脉冲与光孤子相互作用规律的研究. 物理学报, 2016, 65(2): 024208. doi: 10.7498/aps.65.024208
    [19] 孙剑, 李唐军, 王目光, 贾楠, 石彦超, 王春灿, 冯素春. 高非线性光纤正常色散区脉冲尾部非频移分量演化. 物理学报, 2019, 68(11): 114210. doi: 10.7498/aps.68.20190111
    [20] 刘建国, 开桂云, 薛力芳, 张春书, 刘艳格, 王 志, 郭宏雷, 李 燕, 孙婷婷, 袁树忠, 董孝义. 基于高非线性光子晶体光纤Sagnac环形镜的全光开关. 物理学报, 2007, 56(2): 941-945. doi: 10.7498/aps.56.941
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2501
  • PDF下载量:  831
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-24
  • 修回日期:  2011-03-05
  • 刊出日期:  2012-01-05

利用交叉相位调制和四波混频制作的时间透镜的仿真分析

  • 1. 北京交通大学光波技术研究所, 北京 100044
    基金项目: 

    国家自然科学基金(批准号: 60607001)和北京交通大学科研基金(批准号: 2009JBM011)资助的课题.

摘要: 利用高非线性光纤中的交叉相位调制和四波混频分别在仿真中实现了时间透镜. 对基于交叉相位调制的时间透镜中的高非线性光纤中的非线性过程进行了仿真分析. 仿真结果表明, 该时间透镜的主要影响因素为色散、自相位调制与四波混频; 通过采用带有一定色散斜率的高非线性光纤可同时消除色散、自相位调制和四波混频的影响; 另外, 该高非线性光纤的色散零点最好选在信号脉冲和抽运脉冲波长的中心附近. 然后对基于四波混频的时间透镜的实现进行了仿真分析. 仿真结果表明, 该时间透镜的主要影响因素为色散、 自相位调制和其他的四波混频; 通过设定合适大小的信号脉冲和抽运脉冲的功率可消除自相位调制和其他的四波混频的影响; 另外, 通过在高非线性光纤中引入一定的色散可进一步提高信号脉冲和抽运脉冲的功率, 从而获得更高功率的输出脉冲. 最后对两种时间透镜系统做出了比较.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回