搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械抖动棱镜式激光陀螺出射光强度特性

姚呈康 曾晓东 曹长庆

引用本文:
Citation:

机械抖动棱镜式激光陀螺出射光强度特性

姚呈康, 曾晓东, 曹长庆

Intensity properties of output light in prisms laser gyro with mechanical dither bias

Yao Cheng-Kang, Zeng Xiao-Dong, Cao Chang-Qing
PDF
导出引用
  • 针对棱镜式激光陀螺在抖动状态下出射光强度被调制的现象, 系统地研究了机械抖动对棱镜式激光陀螺中光传输轨迹和光电探测器的影响机理. 在对现有棱镜式激光陀螺性能进行分析的基础上, 应用数值模拟和有限元分析方法, 将对称型全反射棱镜纳入四棱镜陀螺的结构设计方案, 并给出了由机械抖动引起的应力双折射和光电探测器位置偏移与出射光强度的一般关系. 结果表明, 机械抖动会使棱镜产生应力双折射, 使激光光路发生改变, 同时造成光电探测器与出射光束产生相对位移, 导致出射光强度幅值产生调制. 使用全对称型的陀螺结构, 选取具有合适折射率的对称型棱镜, 减小探测器与出射光斑中心的相对位移, 可以将出射光强度调制幅值相比原先减小52.63%以上, 显著地改善出射光强度被调制的现象. 此分析结果为提高激光陀螺的可靠性提供了重要参考.
    For the modulation phenomenon of output light intensity in the laser gyro consisting of totally reflecting prisms during its dither bias, the effect of mechanical dither is calculated and analyzed systematically. By the numerical simulation and finite element analysis methods, an analytical expression for the output light intensity of the laser gyro is derived as a function of stress induced birefringence and deviation of photodetector. A new laser gyro type with the symmetic rectangle structure that can improve the stability of optical output is suggested for the first time. The results show that the position assembly accuracy of the photodetector and the stress induced birefringence have a significant effect on light intensity modulation. Reducing the photodetector deviation and using symmetic prisms material with a suitable refractive index, the extent of intensity modulation could be reduced by over 52.63%. The analytic study provides an important reference for improving the quality of output light and the reliability of prisms laser gyro.
    • 基金项目: 国家高技术研究发展计划(批准号: 2006AA12Z144) 资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA12Z144).
    [1]

    Xiong Z Y, Yao Z W, Wang L, Li R B, Wang J, Zhan M S 2011 Acta Phys. Sin. 60 113201 (in Chinese) [熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生 2011 物理学报 60 113201]

    [2]

    Yao C K, Li Q H 2011 Infrared and Laser Engineering 40 1090

    [3]

    Hashimoto T, Maeya J, Fujita T, Maenaka K 2009 Procedia Chemistry 1 564

    [4]

    Zhang Y S, Tang Q A, Pan Z W 1990 Acta Aeronautica et Astronautica Sinica 11 A120 (in Chinese) [章燕申, 汤全安, 潘珍吾 1990 航空学报 11 A120]

    [5]

    Wang K D, Gu Q T 2001 Tsinghua Science and Technology 6 304

    [6]

    Yuan B L, Han S L, Yang J Q, Liao D 2011 Journal of Chinese Inertial Technology 19 145

    [7]

    Broslavets Y Y, Zaitseva T E, Kazakov A A, Fomichev A A 2006 Quantum Electron 36 447

    [8]

    Wang K D, Yan L, Gu Q T 2005 Sensors and Actuators A 119 75

    [9]

    Xie Y P 2000Ph. D. Dissertations (Changsha: National University of Defence Technology) (in Chinese) [谢元平 2000 博士学位论文 (长沙: 国防科学技术大学)]

    [10]

    Wan S P, Li F, Wang X F, Zhu Q 2008Infrared and Laser Engineering 37 728 (in Chinese) [万顺平, 李峰, 王小飞, 朱强 2008 红外与激光工程 37 728]

    [11]

    Liu Y H, Li H F 2009 Nuclear Instrumentation and Methods in Physics Research Section A 598 605

    [12]

    Walter K 2006 Solid State Laser Engineering (New York: Springer) p205

    [13]

    Ou J, Jiang Y S, Li F, Liu L 2011 Acta Phys. Sin. 60 114203 (in Chinese) [欧军, 江月松, 黎芳, 刘丽 2011 物理学报 60 114203]

    [14]

    Matthew J B, Jean C D 2002 Optics Communications 213 331

    [15]

    Kwangjin K, Chan G P 2007 Sensors and Actuators A 133 425

    [16]

    Cen Z F, Li X T 2010 Acta Phys. Sin. 59 5784 (in Chinese) [岑兆丰, 李晓彤 2010 物理学报 59 5784]

    [17]

    Liu Y A, Rahman B M A 1995 J. Lightwave Technol. 13 142

    [18]

    Varallyay Z, Arashitani Y, Varga G 2011 Optical Fiber Technology 17 70

    [19]

    Fan Z F, Luo H, Hu S M 2011 Applied Optics 50 3455

  • [1]

    Xiong Z Y, Yao Z W, Wang L, Li R B, Wang J, Zhan M S 2011 Acta Phys. Sin. 60 113201 (in Chinese) [熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生 2011 物理学报 60 113201]

    [2]

    Yao C K, Li Q H 2011 Infrared and Laser Engineering 40 1090

    [3]

    Hashimoto T, Maeya J, Fujita T, Maenaka K 2009 Procedia Chemistry 1 564

    [4]

    Zhang Y S, Tang Q A, Pan Z W 1990 Acta Aeronautica et Astronautica Sinica 11 A120 (in Chinese) [章燕申, 汤全安, 潘珍吾 1990 航空学报 11 A120]

    [5]

    Wang K D, Gu Q T 2001 Tsinghua Science and Technology 6 304

    [6]

    Yuan B L, Han S L, Yang J Q, Liao D 2011 Journal of Chinese Inertial Technology 19 145

    [7]

    Broslavets Y Y, Zaitseva T E, Kazakov A A, Fomichev A A 2006 Quantum Electron 36 447

    [8]

    Wang K D, Yan L, Gu Q T 2005 Sensors and Actuators A 119 75

    [9]

    Xie Y P 2000Ph. D. Dissertations (Changsha: National University of Defence Technology) (in Chinese) [谢元平 2000 博士学位论文 (长沙: 国防科学技术大学)]

    [10]

    Wan S P, Li F, Wang X F, Zhu Q 2008Infrared and Laser Engineering 37 728 (in Chinese) [万顺平, 李峰, 王小飞, 朱强 2008 红外与激光工程 37 728]

    [11]

    Liu Y H, Li H F 2009 Nuclear Instrumentation and Methods in Physics Research Section A 598 605

    [12]

    Walter K 2006 Solid State Laser Engineering (New York: Springer) p205

    [13]

    Ou J, Jiang Y S, Li F, Liu L 2011 Acta Phys. Sin. 60 114203 (in Chinese) [欧军, 江月松, 黎芳, 刘丽 2011 物理学报 60 114203]

    [14]

    Matthew J B, Jean C D 2002 Optics Communications 213 331

    [15]

    Kwangjin K, Chan G P 2007 Sensors and Actuators A 133 425

    [16]

    Cen Z F, Li X T 2010 Acta Phys. Sin. 59 5784 (in Chinese) [岑兆丰, 李晓彤 2010 物理学报 59 5784]

    [17]

    Liu Y A, Rahman B M A 1995 J. Lightwave Technol. 13 142

    [18]

    Varallyay Z, Arashitani Y, Varga G 2011 Optical Fiber Technology 17 70

    [19]

    Fan Z F, Luo H, Hu S M 2011 Applied Optics 50 3455

计量
  • 文章访问数:  3914
  • PDF下载量:  725
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-13
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

机械抖动棱镜式激光陀螺出射光强度特性

  • 1. 西安电子科技大学技术物理学院, 西安 710071
    基金项目: 

    国家高技术研究发展计划(批准号: 2006AA12Z144) 资助的课题.

摘要: 针对棱镜式激光陀螺在抖动状态下出射光强度被调制的现象, 系统地研究了机械抖动对棱镜式激光陀螺中光传输轨迹和光电探测器的影响机理. 在对现有棱镜式激光陀螺性能进行分析的基础上, 应用数值模拟和有限元分析方法, 将对称型全反射棱镜纳入四棱镜陀螺的结构设计方案, 并给出了由机械抖动引起的应力双折射和光电探测器位置偏移与出射光强度的一般关系. 结果表明, 机械抖动会使棱镜产生应力双折射, 使激光光路发生改变, 同时造成光电探测器与出射光束产生相对位移, 导致出射光强度幅值产生调制. 使用全对称型的陀螺结构, 选取具有合适折射率的对称型棱镜, 减小探测器与出射光斑中心的相对位移, 可以将出射光强度调制幅值相比原先减小52.63%以上, 显著地改善出射光强度被调制的现象. 此分析结果为提高激光陀螺的可靠性提供了重要参考.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回