搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

频率变化的光场对双J-C模型中原子-原子纠缠的调控

崔丛丛 谢双媛 羊亚平

频率变化的光场对双J-C模型中原子-原子纠缠的调控

崔丛丛, 谢双媛, 羊亚平
PDF
导出引用
  • 本文研究了频率随时间变化的光场对双J-C模型中原子原子纠缠的动力学调控, 主要讨论了光场频率随时间作正弦变化和脉冲变化两种典型情况下, 原子原子纠缠度随时间的演化特性. 当光场频率随时间作正弦变化时, 原子原子纠缠度演化的周期、振幅与光场频率调制的振幅有关, 并随着调制振幅的增强而减小. 光场频率的正弦调制和脉冲调制均能使光场与原子的相互作用模式在共振和非共振之间发生变化, 直接影响原子原子纠缠度的演化规律. 通过光场频率的调制可以实现原子原子纠缠度的提高与稳定, 避免ESD现象的出现, 从而达到动态调控原子原子纠缠的目的.
    • 基金项目: 国家自然科学基金(批准号: 11074188)资助的课题.
    [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777 Schrödinger E 1995 Naturwissenschaften 23 807

    [2]

    Greenberger D M, Horne M A, Zeilinger A 1989 Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos (Kluwer Academics, Dordrecht, the Netherlands, 1989) p73

    [3]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [4]

    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188

    [5]

    Biham E, Huttner B, Mor T 1996 Phys. Rev. A 54 2651

    [6]

    Bennett C H, Brassard G, Jozsa R, Peres A, Wootters K W 1993 Phys. Rev. Lett. 70 1895

    [7]

    Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S, Sanpera A 1996 Phys. Rev. Lett. 77 2818

    [8]

    Mcaneney H, Lee J, Kim M S 2003 Phys. Rev. A 68 063814

    [9]

    Li G X, Allaart K, Lenstra D 2004 Phys. Rev. A 69 055802

    [10]

    Hamieh S D, Katsnelson M L 2005 Phys. Rev. A 72 032316 Lkram M, Li F L Zubairy M S 2007 Phys. Rev. A 75 062336

    [11]

    Wei Q, Yan Y, Li G X 2010 Acta Phys. Sin. 59 4453 (in Chinese)[魏巧, 鄢嫣, 李高翔 2010 物理学报 59 4453]

    [12]

    Guo Z, Yan L S, Pan W, Lu B, Xu M F 2011 Acta Phys. Sin. 60 060301 (in Chinese)[郭振, 闫连山, 潘炜, 罗斌, 徐明峰 2011 物理学报 60 060301]

    [13]

    Yönac M, Yu T, Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 s621 Yönac M, Yu T, Eberly J H 2007 J. Phys. B: At. Mol. Opt. Phys. 40 s45 Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [14]

    Maniscalco S, Francica F, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 090503

    [15]

    Bhaktavatsala Rao D D 2007 Phys. Rev. A 76 042312 Creffield C E 2007 Phys. Rev. Lett. 99 110501

    [16]

    Cheng Q L, Xie S Y, Yang Y P 2008 Acta Phys. Sin. 57 6968 (in Chinese)[成秋丽, 谢双媛, 羊亚平 2008 物理学报 57 6968]

    [17]

    Law C K, Zhu S Y, Zubairy M S 1995 Phys. Rev. A 52 4095

    [18]

    Jia F, Xie S Y, Yang Y P 2006 Acta Phys. Sin. 55 5835 (in Chinese)[贾飞, 谢双媛, 羊亚平 2006 物理学报 55 5835]

    [19]

    Zhang W J, Wang Z G, Xie S Y, Yang Y P 2007 Acta Phys. Sin. 56 2168 (in Chinese)[张婉娟, 王治国, 谢双媛, 羊亚平 2007 物理学报 56 2168]

    [20]

    Li Z H, Yu M Z, Yang Y P 2008 Acta Phys. Sin. 57 1693 (in Chinese)[李征鸿, 于明章, 羊亚平 2008 物理学报 57 1693]

    [21]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge University Press, Cambridge) p195

    [22]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022 Wootters W K 1998 Phys. Rev. Lett. 80 2245

  • [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777 Schrödinger E 1995 Naturwissenschaften 23 807

    [2]

    Greenberger D M, Horne M A, Zeilinger A 1989 Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos (Kluwer Academics, Dordrecht, the Netherlands, 1989) p73

    [3]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [4]

    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188

    [5]

    Biham E, Huttner B, Mor T 1996 Phys. Rev. A 54 2651

    [6]

    Bennett C H, Brassard G, Jozsa R, Peres A, Wootters K W 1993 Phys. Rev. Lett. 70 1895

    [7]

    Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S, Sanpera A 1996 Phys. Rev. Lett. 77 2818

    [8]

    Mcaneney H, Lee J, Kim M S 2003 Phys. Rev. A 68 063814

    [9]

    Li G X, Allaart K, Lenstra D 2004 Phys. Rev. A 69 055802

    [10]

    Hamieh S D, Katsnelson M L 2005 Phys. Rev. A 72 032316 Lkram M, Li F L Zubairy M S 2007 Phys. Rev. A 75 062336

    [11]

    Wei Q, Yan Y, Li G X 2010 Acta Phys. Sin. 59 4453 (in Chinese)[魏巧, 鄢嫣, 李高翔 2010 物理学报 59 4453]

    [12]

    Guo Z, Yan L S, Pan W, Lu B, Xu M F 2011 Acta Phys. Sin. 60 060301 (in Chinese)[郭振, 闫连山, 潘炜, 罗斌, 徐明峰 2011 物理学报 60 060301]

    [13]

    Yönac M, Yu T, Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 s621 Yönac M, Yu T, Eberly J H 2007 J. Phys. B: At. Mol. Opt. Phys. 40 s45 Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [14]

    Maniscalco S, Francica F, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 090503

    [15]

    Bhaktavatsala Rao D D 2007 Phys. Rev. A 76 042312 Creffield C E 2007 Phys. Rev. Lett. 99 110501

    [16]

    Cheng Q L, Xie S Y, Yang Y P 2008 Acta Phys. Sin. 57 6968 (in Chinese)[成秋丽, 谢双媛, 羊亚平 2008 物理学报 57 6968]

    [17]

    Law C K, Zhu S Y, Zubairy M S 1995 Phys. Rev. A 52 4095

    [18]

    Jia F, Xie S Y, Yang Y P 2006 Acta Phys. Sin. 55 5835 (in Chinese)[贾飞, 谢双媛, 羊亚平 2006 物理学报 55 5835]

    [19]

    Zhang W J, Wang Z G, Xie S Y, Yang Y P 2007 Acta Phys. Sin. 56 2168 (in Chinese)[张婉娟, 王治国, 谢双媛, 羊亚平 2007 物理学报 56 2168]

    [20]

    Li Z H, Yu M Z, Yang Y P 2008 Acta Phys. Sin. 57 1693 (in Chinese)[李征鸿, 于明章, 羊亚平 2008 物理学报 57 1693]

    [21]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge University Press, Cambridge) p195

    [22]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022 Wootters W K 1998 Phys. Rev. Lett. 80 2245

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2365
  • PDF下载量:  538
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-10
  • 修回日期:  2011-11-14
  • 刊出日期:  2012-06-05

频率变化的光场对双J-C模型中原子-原子纠缠的调控

  • 1. 同济大学物理系, 上海 200092
    基金项目: 

    国家自然科学基金(批准号: 11074188)资助的课题.

摘要: 本文研究了频率随时间变化的光场对双J-C模型中原子原子纠缠的动力学调控, 主要讨论了光场频率随时间作正弦变化和脉冲变化两种典型情况下, 原子原子纠缠度随时间的演化特性. 当光场频率随时间作正弦变化时, 原子原子纠缠度演化的周期、振幅与光场频率调制的振幅有关, 并随着调制振幅的增强而减小. 光场频率的正弦调制和脉冲调制均能使光场与原子的相互作用模式在共振和非共振之间发生变化, 直接影响原子原子纠缠度的演化规律. 通过光场频率的调制可以实现原子原子纠缠度的提高与稳定, 避免ESD现象的出现, 从而达到动态调控原子原子纠缠的目的.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回