搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应

丁玥 沈洁 庞远 刘广同 樊洁 姬忠庆 杨昌黎 吕力

Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应

丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力
PDF
导出引用
导出核心图
  • 拓扑绝缘体的出现为寻找拓扑超导体和Majorana费米子提供了一种可能的途径. 在拓扑绝缘体Bi2Te3表面沉积极薄的不连续铅膜, 试图通过邻近效应感应出大片的超导区, 为下一步研究拓扑超导电性创造条件.借助四引线电输运测量实验, 在0.25 K的低温下看到了超流现象, 表明沉积在Bi2Te3表面的厚度小于20 nm的颗粒化铅膜能够诱导邻近效应, 并且使大片Bi2Te3超导.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2009CB929101, 2011CB921702);国家自然科学基金(批准号: 91221203, 11174340, 11174357)和中国科学院知识创新工程项目资助的课题.
    [1]

    Meissner H 1960 Phys. Rev. 117 672

    [2]

    Pannetier B, Courtois H 2000 J. Low Temp. Phys. 118 599

    [3]

    Golubov A A, Kupriyanov M Y, Il’ichev E 2004 Rev. Mod. Phys. 76 411

    [4]

    Nguyen C, Werking J, Kroemer H, Hu E L 1990 Appl. Phys. Lett. 57 87

    [5]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56

    [6]

    Wang J, Shi C T, Tian M L, Zhang Q, Kumar N, Jain J K, Mallouk T E, Chan M H W 2009 Phys. Rev. Lett. 102 247003

    [7]

    Wang J, Singh M, Tian M L, Kumar N, Liu B Z, Shi C T, Jain J K, Samarth N, Mallouk T E, Chan M H W 2010 Nat. Phys. 6 389

    [8]

    Moore J E 2010 Nature 464 194

    [9]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [10]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [11]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438

    [12]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398

    [13]

    Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178

    [14]

    Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407

    [15]

    Fu L and Kane C L 2009 Phys. Rev. Lett. 102 216403

    [16]

    Tanaka Y, Yokoyama T, Nagaosa N 2009 Phys. Rev. Lett. 103 107002

    [17]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001

    [18]

    Ou Y X, Singh M, Wang J 2012 Sci. China-Phys. Mech. Astron. 55 2226

    [19]

    Kasumov A Y, Kononenko O V, Matveev V N, Borsenko T B, Tulin V A, Vdovin E E, Khodos I I 1996 Phys. Rev. Lett. 77 3029

    [20]

    Sacépé B, Oostinga J B, Li J, Ubaldini A, Couto N J G, Giannini E, Morpurgo A F 2011 Nat. Commun. 2 575

    [21]

    Zhang D, Wang J, DaSilva A M, Lee J S, Gutierrez H R, Chan M H W, Jain J, Samarth N 2011 Phys. Rev. B 84 165120

    [22]

    Wang J, Chang C Z, Li H D, He K, Zhang D, Singh M, Ma X C, Samarth N, Xie M H, Xue Q K, Chan M H W 2012 Phys. Rev. B 85 045415

    [23]

    Veldhorst M, Snelder M, Hoek M, Gang T, Guduru V K, Wang X L, Zeitler U, Wiel W G V D, Golubov A A, Hilgenkamp H 2012 Nat. Mat. 11 417

    [24]

    Williams J R, Bestwick A J, Gallagher P, Hong S S, Cui Y, Bleich A S, Analytis J G, Fisher I R, Goldhaber-Gordon D 2012 Phys. Rev. Lett. 109 056803

    [25]

    Qu F M, Yang F, Shen J, Ding Y, Chen J, Ji Z Q, Liu G T, Fan J, Jing X N, Yang C L, Lu L 2012 Sci. Rep. 2 339

    [26]

    He H T, Li B K, Liu H C, Guo X, Wang Z Y, Xie M H, Wang J N 2012 Appl. Phys. Lett. 100 032105

    [27]

    Tinkham M 1996 Introduction to Superconductivity (New York: McGraw-Hill, Inc.) p131

    [28]

    De Gennes P G 1964 Rev. Mod. Phys. 36 225

  • [1]

    Meissner H 1960 Phys. Rev. 117 672

    [2]

    Pannetier B, Courtois H 2000 J. Low Temp. Phys. 118 599

    [3]

    Golubov A A, Kupriyanov M Y, Il’ichev E 2004 Rev. Mod. Phys. 76 411

    [4]

    Nguyen C, Werking J, Kroemer H, Hu E L 1990 Appl. Phys. Lett. 57 87

    [5]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56

    [6]

    Wang J, Shi C T, Tian M L, Zhang Q, Kumar N, Jain J K, Mallouk T E, Chan M H W 2009 Phys. Rev. Lett. 102 247003

    [7]

    Wang J, Singh M, Tian M L, Kumar N, Liu B Z, Shi C T, Jain J K, Samarth N, Mallouk T E, Chan M H W 2010 Nat. Phys. 6 389

    [8]

    Moore J E 2010 Nature 464 194

    [9]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [10]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [11]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438

    [12]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398

    [13]

    Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178

    [14]

    Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407

    [15]

    Fu L and Kane C L 2009 Phys. Rev. Lett. 102 216403

    [16]

    Tanaka Y, Yokoyama T, Nagaosa N 2009 Phys. Rev. Lett. 103 107002

    [17]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001

    [18]

    Ou Y X, Singh M, Wang J 2012 Sci. China-Phys. Mech. Astron. 55 2226

    [19]

    Kasumov A Y, Kononenko O V, Matveev V N, Borsenko T B, Tulin V A, Vdovin E E, Khodos I I 1996 Phys. Rev. Lett. 77 3029

    [20]

    Sacépé B, Oostinga J B, Li J, Ubaldini A, Couto N J G, Giannini E, Morpurgo A F 2011 Nat. Commun. 2 575

    [21]

    Zhang D, Wang J, DaSilva A M, Lee J S, Gutierrez H R, Chan M H W, Jain J, Samarth N 2011 Phys. Rev. B 84 165120

    [22]

    Wang J, Chang C Z, Li H D, He K, Zhang D, Singh M, Ma X C, Samarth N, Xie M H, Xue Q K, Chan M H W 2012 Phys. Rev. B 85 045415

    [23]

    Veldhorst M, Snelder M, Hoek M, Gang T, Guduru V K, Wang X L, Zeitler U, Wiel W G V D, Golubov A A, Hilgenkamp H 2012 Nat. Mat. 11 417

    [24]

    Williams J R, Bestwick A J, Gallagher P, Hong S S, Cui Y, Bleich A S, Analytis J G, Fisher I R, Goldhaber-Gordon D 2012 Phys. Rev. Lett. 109 056803

    [25]

    Qu F M, Yang F, Shen J, Ding Y, Chen J, Ji Z Q, Liu G T, Fan J, Jing X N, Yang C L, Lu L 2012 Sci. Rep. 2 339

    [26]

    He H T, Li B K, Liu H C, Guo X, Wang Z Y, Xie M H, Wang J N 2012 Appl. Phys. Lett. 100 032105

    [27]

    Tinkham M 1996 Introduction to Superconductivity (New York: McGraw-Hill, Inc.) p131

    [28]

    De Gennes P G 1964 Rev. Mod. Phys. 36 225

  • [1] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 物理学报, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [2] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [3] 郁华玲. 超导邻近效应在正常金属层中引起的反常小能隙现象. 物理学报, 2007, 56(10): 6038-6044. doi: 10.7498/aps.56.6038
    [4] 许楠, 张岩. 三聚化非厄密晶格中具有趋肤效应的拓扑边缘态. 物理学报, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [5] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [6] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [7] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [8] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [9] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [10] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展. 物理学报, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [11] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [12] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [13] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极. 物理学报, 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [14] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究. 物理学报, 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [15] 敬玉梅, 黄少云, 吴金雄, 彭海琳, 徐洪起. 三维拓扑绝缘体antidot阵列结构中的磁致输运研究. 物理学报, 2018, 67(4): 047301. doi: 10.7498/aps.67.20172346
    [16] 韦庞, 李康, 冯硝, 欧云波, 张立果, 王立莉, 何珂, 马旭村, 薛其坤. 在预刻蚀的衬底上通过分子束外延直接生长出拓扑绝缘体薄膜的微器件. 物理学报, 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [17] 关童, 滕静, 吴克辉, 李永庆. 拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中的线性磁阻. 物理学报, 2015, 64(7): 077201. doi: 10.7498/aps.64.077201
    [18] 王怀强, 杨运友, 鞠艳, 盛利, 邢定钰. 铁磁绝缘体间的极薄Bi2Se3薄膜的相变研究. 物理学报, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [19] 王啸天, 代学芳, 贾红英, 王立英, 刘然, 李勇, 刘笑闯, 张小明, 王文洪, 吴光恒, 刘国栋. Heusler型X2RuPb (X=Lu, Y)合金的反带结构和拓扑绝缘性. 物理学报, 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [20] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1363
  • PDF下载量:  27028
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-23
  • 修回日期:  2013-05-09
  • 刊出日期:  2013-08-20

Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家实验室, 北京 100190
    基金项目: 

    国家重点基础研究发展计划(批准号: 2009CB929101, 2011CB921702)

    国家自然科学基金(批准号: 91221203, 11174340, 11174357)和中国科学院知识创新工程项目资助的课题.

摘要: 拓扑绝缘体的出现为寻找拓扑超导体和Majorana费米子提供了一种可能的途径. 在拓扑绝缘体Bi2Te3表面沉积极薄的不连续铅膜, 试图通过邻近效应感应出大片的超导区, 为下一步研究拓扑超导电性创造条件.借助四引线电输运测量实验, 在0.25 K的低温下看到了超流现象, 表明沉积在Bi2Te3表面的厚度小于20 nm的颗粒化铅膜能够诱导邻近效应, 并且使大片Bi2Te3超导.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回