搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溅射后硒化法制备的CIGS薄膜中Ga元素扩散研究

毛启楠 张晓勇 李学耕 贺劲鑫 于平荣 王东

引用本文:
Citation:

溅射后硒化法制备的CIGS薄膜中Ga元素扩散研究

毛启楠, 张晓勇, 李学耕, 贺劲鑫, 于平荣, 王东

Gallium diffusion in CIGS thin films prepared by sequential sputtering/selenization technique

Mao Qi-Nan, Zhang Xiao-Yong, Li Xue-Geng, He Jin-Xin, Yu Ping-Rong, Wang Dong
PDF
导出引用
  • 溅射后硒化制备Cu(In,Ga)Se2吸收层工艺过程中,Ga元素在吸收层底部富集现象是较为普遍的. 本文从预制层工艺和硒化工艺两个方面研究了Ga 元素在Cu(In,Ga)Se2吸收层中扩散的影响因素. 结果表明,预制层中的Cu/(In+Ga)和硒化温度对Ga元素扩散的影响较为显著,而预制层中的Ga/(In+Ga)对Ga元素扩散的影响较小,Ga元素的扩散系数制约了其在Cu(In,Ga)Se2吸收层表面的含量. 通过工艺优化提高吸收层表面的Ga含量,制备获得了光电转换效率为12.42%的Cu(In,Ga)Se2薄膜太阳能电池.
    In the sequential sputtering/selenization process, Ga segregation at the back of Cu(In, Ga)Se2 (CIGS) absorber is frequently observed. In this paper, Ga diffusion in CIGS absorber is investigated during the sputtering and selenization process. Results show that Ga diffusion is closely related to Cu/(In+Ga) ratio in the metallic precursors and the selenization temperature, but barely influenced by Ga/(In+Ga) ratio in the metallic precursors. Based on Fick's second law, a simplified model is established to describe Ga diffusion from the back to the surface of CIGS absorber, which suggests that Ga diffusion coefficient is the dominant factor to constrain Ga content near the absorber surface. By process optimization, Ga/(In+Ga) ratio near the absorber surface is successfully increased. Accordingly, a CIGS solar cell device with efficiency of 12.42% has been obtained.
    • 基金项目: 国家高技术研究发展计划(批准号:2012AA050702,2013AA050904)、国家重大科学研究计划(批准号:2011CB933300,2013CB934004)、国家自然科学基金(批准号:21371016)和国家科技支撑计划(批准号:2011BAK16B01)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant Nos. 2012AA050702, 2013AA050904), the National Basic Research Program of China (Grant Nos. 2011CB933300, 2013CB934004), the National Natural Science Foundation of China (Grant No. 21371016), and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2011BAK16B01).
    [1]

    Chirila A, Reinhard P, Pianezzi F, Bloesch P, Uhl A R, Fella C, Kranz L, Keller D, Gretener C, Hagendorfer H, Jaeger D, Erni R, Nishiwaki S, Buecheler S, Tiwari A N 2013 Nat. Mater. 12 1107

    [2]

    Powalla M, Jackson P, Witte W, Hariskos D, Paetel S, Tschamber C, Wischmann W 2013 Sol. Energy Mater. Sol. Cells 119 51

    [3]

    Komaki H, Furue S, Yamada A, Ishizuka S, Shibata H, Matsubara K, Niki S 2012 Prog. Photovoltaics 20 595

    [4]

    Liu F F, Sun Y, He Q 2014 Acta Phys. Sin. 63 047201 (in Chinese) [刘芳芳, 孙云, 何青 2014 物理学报 63 047201]

    [5]

    Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi J W, Yu Z S, Zhang Y H, Bartholomeusz B, Ma Z Q 2013 Chin. Phys. B 22 018801

    [6]

    Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, Matsubara K 2010 Prog. Photovoltaics 18 453

    [7]

    Cahen D, Noufi R 1992 J. Phys. Chem. Solids 53 991

    [8]

    Purwins M, Weber A, Berwian P, Mller G, Hergert F, Jost S, Hock R 2006 J. Cryst. Growth 287 408

    [9]

    Pan H P, Bo L K, Huang T W, Zhang Y, Yu T, Yao S D 2012 Acta Phys. Sin. 61 228801 (in Chinese) [潘惠平, 薄连坤, 黄太武, 张毅, 于涛, 姚淑德 2012 物理学报 61 228801]

    [10]

    Liang H F, Avachat U, Liu W, van Duren J, Le M 2012 Solid-State Electron. 76 95

    [11]

    Hsu H R, Hsu S C, Liu Y S 2012 Sol. Energy 86 48

    [12]

    Kim W K, Hanket G M, Shafarman W N 2011 Sol. Energy Mater. Sol. Cells 95 235

    [13]

    Lin Y C, Yen W T, Chen Y L, Wang L Q, Jih F W 2011 Physica B 406 824

    [14]

    Chanatana J, Murata M, Higuchi T, Watanabe T, Teraji S, Kawamura K, Minemoto T 2013 J. Appl. Phys. 114 084501

    [15]

    Schroeder D, Berry G, Rockett A 1996 Appl. Phys. Lett. 69 4068

    [16]

    Huang J H 1996 Diffusion in Metals and Alloys (Beijing: Metallurgical Industry Press) p50 (in Chinese) [黄继华 1996 金属及合金中的扩散(北京:冶金工业出版社)第50页]

    [17]

    Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese) [韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮 2013 物理学报 62 048401]

  • [1]

    Chirila A, Reinhard P, Pianezzi F, Bloesch P, Uhl A R, Fella C, Kranz L, Keller D, Gretener C, Hagendorfer H, Jaeger D, Erni R, Nishiwaki S, Buecheler S, Tiwari A N 2013 Nat. Mater. 12 1107

    [2]

    Powalla M, Jackson P, Witte W, Hariskos D, Paetel S, Tschamber C, Wischmann W 2013 Sol. Energy Mater. Sol. Cells 119 51

    [3]

    Komaki H, Furue S, Yamada A, Ishizuka S, Shibata H, Matsubara K, Niki S 2012 Prog. Photovoltaics 20 595

    [4]

    Liu F F, Sun Y, He Q 2014 Acta Phys. Sin. 63 047201 (in Chinese) [刘芳芳, 孙云, 何青 2014 物理学报 63 047201]

    [5]

    Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi J W, Yu Z S, Zhang Y H, Bartholomeusz B, Ma Z Q 2013 Chin. Phys. B 22 018801

    [6]

    Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, Matsubara K 2010 Prog. Photovoltaics 18 453

    [7]

    Cahen D, Noufi R 1992 J. Phys. Chem. Solids 53 991

    [8]

    Purwins M, Weber A, Berwian P, Mller G, Hergert F, Jost S, Hock R 2006 J. Cryst. Growth 287 408

    [9]

    Pan H P, Bo L K, Huang T W, Zhang Y, Yu T, Yao S D 2012 Acta Phys. Sin. 61 228801 (in Chinese) [潘惠平, 薄连坤, 黄太武, 张毅, 于涛, 姚淑德 2012 物理学报 61 228801]

    [10]

    Liang H F, Avachat U, Liu W, van Duren J, Le M 2012 Solid-State Electron. 76 95

    [11]

    Hsu H R, Hsu S C, Liu Y S 2012 Sol. Energy 86 48

    [12]

    Kim W K, Hanket G M, Shafarman W N 2011 Sol. Energy Mater. Sol. Cells 95 235

    [13]

    Lin Y C, Yen W T, Chen Y L, Wang L Q, Jih F W 2011 Physica B 406 824

    [14]

    Chanatana J, Murata M, Higuchi T, Watanabe T, Teraji S, Kawamura K, Minemoto T 2013 J. Appl. Phys. 114 084501

    [15]

    Schroeder D, Berry G, Rockett A 1996 Appl. Phys. Lett. 69 4068

    [16]

    Huang J H 1996 Diffusion in Metals and Alloys (Beijing: Metallurgical Industry Press) p50 (in Chinese) [黄继华 1996 金属及合金中的扩散(北京:冶金工业出版社)第50页]

    [17]

    Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese) [韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮 2013 物理学报 62 048401]

计量
  • 文章访问数:  2100
  • PDF下载量:  585
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-27
  • 修回日期:  2014-02-25
  • 刊出日期:  2014-06-05

溅射后硒化法制备的CIGS薄膜中Ga元素扩散研究

  • 1. 北京大学工学院, 北京 100871;
  • 2. 普尼太阳能(杭州)有限公司, 杭州 310051
    基金项目: 

    国家高技术研究发展计划(批准号:2012AA050702,2013AA050904)、国家重大科学研究计划(批准号:2011CB933300,2013CB934004)、国家自然科学基金(批准号:21371016)和国家科技支撑计划(批准号:2011BAK16B01)资助的课题.

摘要: 溅射后硒化制备Cu(In,Ga)Se2吸收层工艺过程中,Ga元素在吸收层底部富集现象是较为普遍的. 本文从预制层工艺和硒化工艺两个方面研究了Ga 元素在Cu(In,Ga)Se2吸收层中扩散的影响因素. 结果表明,预制层中的Cu/(In+Ga)和硒化温度对Ga元素扩散的影响较为显著,而预制层中的Ga/(In+Ga)对Ga元素扩散的影响较小,Ga元素的扩散系数制约了其在Cu(In,Ga)Se2吸收层表面的含量. 通过工艺优化提高吸收层表面的Ga含量,制备获得了光电转换效率为12.42%的Cu(In,Ga)Se2薄膜太阳能电池.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回