搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空位对纤锌矿型AlN自发极化影响的最大局域化Wannier函数方法研究

牛海波 陈光德 伍叶龙 耶红刚

引用本文:
Citation:

空位对纤锌矿型AlN自发极化影响的最大局域化Wannier函数方法研究

牛海波, 陈光德, 伍叶龙, 耶红刚

Influence of vacancy on spontaneous polarization of wurtzite AlN: a maximally localized Wannierfunction study

Niu Hai-Bo, Chen Guang-De, Wu Ye-Long, Ye Hong-Gang
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理平面波超软赝势方法,计算了纤锌矿型AlN中引入不同电荷态的N空位和Al空位时结构中最大局域化Wannier函数,并根据Wannier函数的空间分布及空间分布的几何中心位置,对空位引起的晶体电子结构变化及[0001],[1010],[1210]晶向上的自发极化进行了研究. 结果表明,利用最大局域化Wannier函数分析电子结构具有直观的特点,清晰地表明N–Al 键具有较强的离子性. 研究发现,N空位结构中悬挂键上电荷向空位处转移,而Al空位结构中悬挂键上电荷则远离空位,沿悬挂键方向移动到N原子一侧. 同时发现,空位的引入破坏了[1010],[1210]晶向上的中心对称结构,产生了极化,且极化强度随着空位电荷态的增加而增大. 在[0001]晶向上,随着N空位电荷态的增加,空位周围电子结构发生了剧烈变化,使得自发极化发生了逆转,极化强度随着电荷态的增加而增大; 而在Al空位中,随着电荷态的增加,自发极化沿原方向显著增加,但没有发生极化反转.
    By using first-principles plane-wave ultrasoft pseudopotential method based on the density functional theory, the maximally localized Wannier functions of N vacancy and Al vacancy with different charge states in wurtzite AlN are calculated. With the shape and center of the computed Wannier function, the electronic structure and the spontaneous polarization of vacancy are studied respectively. The results show that N–Al bond possesses a large ionicity. It is found that the electrons of the dangling bonds displace to the positions of vacancies in N vacancy structure, while in Al vacancy structure the electrons of dangling bonds keep away from vacancies and move to the other side of N atoms. Since the vacancy breaks the centrosymmetry of the [1010] and [1210] orientations, the polarization will be induced in these two directions, and the polarization will increase as the charge increases. In the [0001] orientation, the spontaneous polarization in N vacancy will reverse as charge increases because of the dramatic variation of the electronic structure. Contrary to N vacancy, the reversion does not occur although the spontaneous polarization of Al vacancy increases as charge increases.
    • 基金项目: 国家自然科学基金(批准号:61176079)和陕西省教育厅自然科学基金(批准号:2013JK0621)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61176079) and the Natural Science Foundation of Education Bureau of Shannxi Province, China (Grant No. 2013JK0621).
    [1]

    Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325

    [2]

    Nishida T, Saito H, Kobayashi N 2001 Appl. Phys. Lett. 79 711

    [3]

    Walker D, Zhang X, Kung P, Saxler A, Javadpour S, Xu J, Razeghi M 1996 Appl. Phys. Lett. 68 2100

    [4]

    Hung A, Russo S P, McCulloch D G, Prawer S 2004 J. Chem. Phys. 120 4890

    [5]

    Zhong W, King-Smith R D, Vanderbilt D 1994 Phys. Rev. Lett. 72 3618

    [6]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 10024

    [7]

    Maki J M, Makkonen I, Tuomisto F, Karjalainen A, Suihkonen S, Raisanen J, Chemekova T Y, Makarov Y N 2011 Phys. Rev. B 84 081204

    [8]

    Schulz T, Albrecht M, Irmscher K, Hartmann C, Wollweber J, Fornari R 2011 Phys. Status Solidi B 248 1513

    [9]

    Kingsmith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651

    [10]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847

    [11]

    Benson D, Sankey O F, Häussermann U 2011 Phys. Rev. B 84 125211

    [12]

    Gao F, Bylaska E J, El-Azab A, Weber W J 2004 Appl. Phys. Lett. 85 5565

    [13]

    Corsetti F, Mostofi A A 2011 Phys. Rev. B 84 035209

    [14]

    Gao S P, Zhu T 2012 Acta Phys. Sin. 61 137103 (in Chinese) [高尚鹏, 祝桐 2012 物理学报 61 137103]

    [15]

    Marzari N, Mostofi A A, Yates J R, Souza I, Vanderbilt D 2012 Rev. Mod. Phys. 84 1419

    [16]

    Andrinopoulos L, Hine N D, Mostofi A A 2011 J. Chem. Phys. 135 154105

    [17]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502

    [18]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [19]

    Ye H G, Chen G D, Zhu Y Z, Zhang J W 2007 Acta Phys. Sin. 56 5376 (in Chinese) [耶红刚, 陈光德, 竹有章, 张俊武 2007 物理学报 56 5376]

    [20]

    Abu-Farsakh H, Qteish A 2007 Phys. Rev. B 75 085201

    [21]

    Lahnemann J, Brandt O, Jahn U, Pfuller C, Roder C, Dogan P, Grosse F, Belabbes A, Bechstedt F, Trampert A, Geelhaar L 2012 Phys. Rev. B 86 081302

    [22]

    Ye H G, Chen G D, Zhu Y Z, Lu H M 2007 Chin. Phys. 16 3803

    [23]

    Yates J R, Wang X J, Vanderbilt D, Souza I 2007 Phys. Rev. B 75 195121

    [24]

    Laaksonen K, Ganchenkova M G, Nieminen R M 2009 J. Phys.: Condens. Matter 21 015803

    [25]

    Vail J M, Schindel D, Yang A, Penner O, Pandey R, Jiang H, Blanco M A, Costales A, Qiu Q C, Xu Y 2004 J. Phys.: Condens. Matter 16 3371

  • [1]

    Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325

    [2]

    Nishida T, Saito H, Kobayashi N 2001 Appl. Phys. Lett. 79 711

    [3]

    Walker D, Zhang X, Kung P, Saxler A, Javadpour S, Xu J, Razeghi M 1996 Appl. Phys. Lett. 68 2100

    [4]

    Hung A, Russo S P, McCulloch D G, Prawer S 2004 J. Chem. Phys. 120 4890

    [5]

    Zhong W, King-Smith R D, Vanderbilt D 1994 Phys. Rev. Lett. 72 3618

    [6]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 10024

    [7]

    Maki J M, Makkonen I, Tuomisto F, Karjalainen A, Suihkonen S, Raisanen J, Chemekova T Y, Makarov Y N 2011 Phys. Rev. B 84 081204

    [8]

    Schulz T, Albrecht M, Irmscher K, Hartmann C, Wollweber J, Fornari R 2011 Phys. Status Solidi B 248 1513

    [9]

    Kingsmith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651

    [10]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847

    [11]

    Benson D, Sankey O F, Häussermann U 2011 Phys. Rev. B 84 125211

    [12]

    Gao F, Bylaska E J, El-Azab A, Weber W J 2004 Appl. Phys. Lett. 85 5565

    [13]

    Corsetti F, Mostofi A A 2011 Phys. Rev. B 84 035209

    [14]

    Gao S P, Zhu T 2012 Acta Phys. Sin. 61 137103 (in Chinese) [高尚鹏, 祝桐 2012 物理学报 61 137103]

    [15]

    Marzari N, Mostofi A A, Yates J R, Souza I, Vanderbilt D 2012 Rev. Mod. Phys. 84 1419

    [16]

    Andrinopoulos L, Hine N D, Mostofi A A 2011 J. Chem. Phys. 135 154105

    [17]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502

    [18]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [19]

    Ye H G, Chen G D, Zhu Y Z, Zhang J W 2007 Acta Phys. Sin. 56 5376 (in Chinese) [耶红刚, 陈光德, 竹有章, 张俊武 2007 物理学报 56 5376]

    [20]

    Abu-Farsakh H, Qteish A 2007 Phys. Rev. B 75 085201

    [21]

    Lahnemann J, Brandt O, Jahn U, Pfuller C, Roder C, Dogan P, Grosse F, Belabbes A, Bechstedt F, Trampert A, Geelhaar L 2012 Phys. Rev. B 86 081302

    [22]

    Ye H G, Chen G D, Zhu Y Z, Lu H M 2007 Chin. Phys. 16 3803

    [23]

    Yates J R, Wang X J, Vanderbilt D, Souza I 2007 Phys. Rev. B 75 195121

    [24]

    Laaksonen K, Ganchenkova M G, Nieminen R M 2009 J. Phys.: Condens. Matter 21 015803

    [25]

    Vail J M, Schindel D, Yang A, Penner O, Pandey R, Jiang H, Blanco M A, Costales A, Qiu Q C, Xu Y 2004 J. Phys.: Condens. Matter 16 3371

计量
  • 文章访问数:  2203
  • PDF下载量:  693
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-07
  • 修回日期:  2014-04-28
  • 刊出日期:  2014-08-05

空位对纤锌矿型AlN自发极化影响的最大局域化Wannier函数方法研究

  • 1. 西安交通大学应用物理系, 西安 710049;
  • 2. 西安交通大学城市学院物理教学中心, 西安 710018
    基金项目: 

    国家自然科学基金(批准号:61176079)和陕西省教育厅自然科学基金(批准号:2013JK0621)资助的课题.

摘要: 采用基于密度泛函理论的第一性原理平面波超软赝势方法,计算了纤锌矿型AlN中引入不同电荷态的N空位和Al空位时结构中最大局域化Wannier函数,并根据Wannier函数的空间分布及空间分布的几何中心位置,对空位引起的晶体电子结构变化及[0001],[1010],[1210]晶向上的自发极化进行了研究. 结果表明,利用最大局域化Wannier函数分析电子结构具有直观的特点,清晰地表明N–Al 键具有较强的离子性. 研究发现,N空位结构中悬挂键上电荷向空位处转移,而Al空位结构中悬挂键上电荷则远离空位,沿悬挂键方向移动到N原子一侧. 同时发现,空位的引入破坏了[1010],[1210]晶向上的中心对称结构,产生了极化,且极化强度随着空位电荷态的增加而增大. 在[0001]晶向上,随着N空位电荷态的增加,空位周围电子结构发生了剧烈变化,使得自发极化发生了逆转,极化强度随着电荷态的增加而增大; 而在Al空位中,随着电荷态的增加,自发极化沿原方向显著增加,但没有发生极化反转.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回