搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维空间域多普勒功率谱及其多天线系统性能

周杰 王亚林 菊池久和

三维空间域多普勒功率谱及其多天线系统性能

周杰, 王亚林, 菊池久和
PDF
导出引用
导出核心图
  • 在三维(3 dimensional, 3D)空间域信道建模中, 针对波达信号仰角(elevation angle, EA) 在不同覆盖区散射体环境中的分布, 提出了指数型EA仰角概率密度函数并对其信道特征实现建模. 在假设波达信号方位谱为均匀分布时, 采用近似算法在对称和非对称两种情况下导出其多普勒功率谱密度(power spectral density, PSD)闭合表达式. 从分析结果可发现PSD与仰角函数式及波达信号边界角度参数βmin 和βmax关系密切, 并与多普勒频移密切相关. 对该三维空间域中的多输入多输出(multiple input multiple output, MIMO)多天线信号衰落相关性(spatial fading correlation, SFC)进行了推导和仿真. 结果表明MIMO多天线阵元间SFC与βmin和βmax关系密切, 而EA仰角概率密度函数参数n 对SFC影响较小. 本文引入的指数型EA仰角概率密度函数可应用于多种无线通信环境下的信道参数估计, 且与传统模型对比表明本模型的信道参数估计结果符合理论和经验值, 拓展了对3D空间域统计信道的建模与MIMO多天线分析计算.
    • 基金项目: 国家自然科学基金(批准号: 61372128, 61471153)、江苏省科技支撑计划(工业)项目(批准号: BE2011195)、江苏省高校自然科学科学研究重大计划项目(批准号: 14KJA510001)和中国博士后基金(批准号: 010986678)资助的课题.
    [1]

    Cho Y S, Kim J, Yang W Y, Kang C G (translated by Sun K, Huang W) 2013 MIMO-OFDM Wireless Communications with MATLAB (Beijing: Publishing House of Electronic Industry) pp3-17 (in Chinese) [Cho Y S, Kim J, Yang W Y, Kang C G著 (孙锴, 黄威 译) 2013 MIMO-OFDM 无线通信技术及MATLAB实现 (北京: 电子工业出版社) 第3–17页]

    [2]

    Petrus P, Reed J H, Rappaport T S 1997 IEEE Commun. Lett. 1 40

    [3]

    Hu H B, Du P, Huang S H, Wang Y 2013 Chin. Phys. B 22 074703

    [4]

    Clarke R H 1968 Bell Syst. Tech. J. 47 957

    [5]

    Ertel R B, Reed J H 1999 IEEE J. Sel. Areas Commun. 17 1829

    [6]

    Petrus P, Reed J H, Rappaport T S 2002 IEEE Trans. Commun. 50 495

    [7]

    Lee W C Y, Brandt R H 1973 IEEE Trans. Veh. Technol. 22 110

    [8]

    Pei F, Zhang J, Pan C 2013 IEEE Veh. Technol. Conf. Las Vegas, America, September 2-5, 2013 p1

    [9]

    Aulin T 1979 IEEE Trans. Veh. Technol. 28 182

    [10]

    Parsons J D, Parsons P J D 2000 The Mobile Radio Propagation Channel (New York: John Wiley) pp137-145

    [11]

    Qu S X, Yeap T 1999 IEEE Trans. Veh. Technol. 48 765

    [12]

    Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211

    [13]

    Zhou J, Qiu L, Hisakazu K 2012 IET Commun. 6 2775

    [14]

    Zhou J, Qiu L, Kikuchi H 2013 J. China Inst. Commun. 34 1 (in Chinese) [周杰, 邱琳, 菊池久和 2013 通信学报 5 1]

    [15]

    Xiao H L, Ouyang S, Nie Z P 2009 Acta Phys. Sin. 58 6779 (in Chinese) [肖海林, 欧阳缮, 聂在平 2009 物理学报 58 6779]

    [16]

    Lee W C Y 1973 IEEE Trans. Wireless Commun. 21 1214

    [17]

    Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215 (in Chinese) [姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215]

    [18]

    Fu H Y, Chen J J, Cao S K, Jia X D 2011 Acta Electron. Sin. 10 2221 (in Chinese) [傅海阳, 陈技江, 曹士坷, 贾向东 2011 电子学报 10 2221]

    [19]

    Nie Z P, Xiao H L, Ouyang S 2009 Acta Phys. Sin. 58 3685 (in Chinese) [聂在平, 肖海林, 欧阳缮 2009 物理学报 58 3685]

    [20]

    Jeffrey A, Zwillinger D 2007 Table of Integrals, Series, and Products (Russian: Academic Press) pp185-193

    [21]

    Yong S K, Thompson J S 2005 IEEE Trans. Wireless Commun. 4 2856

    [22]

    Buyukcorak S, Karabulut K G 2011 IEEE International Conf. on Signal and Commun. Systems Honolulu, America, December 12-14, 2011 p1

    [23]

    Andersen J B, Pedersen K I 2002 IEEE Trans. Antennas Propag. 50 391

    [24]

    Buehrer R M 2002 IEEE Veh. Technol. Conf. Vancouver, Canada, September 24-28, 2002 p1173

  • [1]

    Cho Y S, Kim J, Yang W Y, Kang C G (translated by Sun K, Huang W) 2013 MIMO-OFDM Wireless Communications with MATLAB (Beijing: Publishing House of Electronic Industry) pp3-17 (in Chinese) [Cho Y S, Kim J, Yang W Y, Kang C G著 (孙锴, 黄威 译) 2013 MIMO-OFDM 无线通信技术及MATLAB实现 (北京: 电子工业出版社) 第3–17页]

    [2]

    Petrus P, Reed J H, Rappaport T S 1997 IEEE Commun. Lett. 1 40

    [3]

    Hu H B, Du P, Huang S H, Wang Y 2013 Chin. Phys. B 22 074703

    [4]

    Clarke R H 1968 Bell Syst. Tech. J. 47 957

    [5]

    Ertel R B, Reed J H 1999 IEEE J. Sel. Areas Commun. 17 1829

    [6]

    Petrus P, Reed J H, Rappaport T S 2002 IEEE Trans. Commun. 50 495

    [7]

    Lee W C Y, Brandt R H 1973 IEEE Trans. Veh. Technol. 22 110

    [8]

    Pei F, Zhang J, Pan C 2013 IEEE Veh. Technol. Conf. Las Vegas, America, September 2-5, 2013 p1

    [9]

    Aulin T 1979 IEEE Trans. Veh. Technol. 28 182

    [10]

    Parsons J D, Parsons P J D 2000 The Mobile Radio Propagation Channel (New York: John Wiley) pp137-145

    [11]

    Qu S X, Yeap T 1999 IEEE Trans. Veh. Technol. 48 765

    [12]

    Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211

    [13]

    Zhou J, Qiu L, Hisakazu K 2012 IET Commun. 6 2775

    [14]

    Zhou J, Qiu L, Kikuchi H 2013 J. China Inst. Commun. 34 1 (in Chinese) [周杰, 邱琳, 菊池久和 2013 通信学报 5 1]

    [15]

    Xiao H L, Ouyang S, Nie Z P 2009 Acta Phys. Sin. 58 6779 (in Chinese) [肖海林, 欧阳缮, 聂在平 2009 物理学报 58 6779]

    [16]

    Lee W C Y 1973 IEEE Trans. Wireless Commun. 21 1214

    [17]

    Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215 (in Chinese) [姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215]

    [18]

    Fu H Y, Chen J J, Cao S K, Jia X D 2011 Acta Electron. Sin. 10 2221 (in Chinese) [傅海阳, 陈技江, 曹士坷, 贾向东 2011 电子学报 10 2221]

    [19]

    Nie Z P, Xiao H L, Ouyang S 2009 Acta Phys. Sin. 58 3685 (in Chinese) [聂在平, 肖海林, 欧阳缮 2009 物理学报 58 3685]

    [20]

    Jeffrey A, Zwillinger D 2007 Table of Integrals, Series, and Products (Russian: Academic Press) pp185-193

    [21]

    Yong S K, Thompson J S 2005 IEEE Trans. Wireless Commun. 4 2856

    [22]

    Buyukcorak S, Karabulut K G 2011 IEEE International Conf. on Signal and Commun. Systems Honolulu, America, December 12-14, 2011 p1

    [23]

    Andersen J B, Pedersen K I 2002 IEEE Trans. Antennas Propag. 50 391

    [24]

    Buehrer R M 2002 IEEE Veh. Technol. Conf. Vancouver, Canada, September 24-28, 2002 p1173

  • [1] 周杰, 王亚林, 菊池久和. 多天线信道空间衰落相关性近似算法及其复杂性研究. 物理学报, 2014, 63(23): 230205. doi: 10.7498/aps.63.230205
    [2] 周丽丹, 粟敬钦, 李平, 刘兰琴, 王文义, 王方, 莫磊, 程文雍, 张小民. 高功率固体激光装置光学元件“缺陷”分布的功率谱密度方法及等效求法. 物理学报, 2009, 58(9): 6279-6284. doi: 10.7498/aps.58.6279
    [3] 彭志涛, 景峰, 刘兰琴, 朱启华, 陈波, 张昆, 刘华, 张清泉, 程晓峰, 蒋东镔, 刘红婕, 彭翰生. 自聚焦激光束光束质量评价的功率谱密度方法. 物理学报, 2003, 52(1): 87-90. doi: 10.7498/aps.52.87
    [4] 周丽丹, 粟敬钦, 李平, 王文义, 刘兰琴, 张颖, 张小民. 高功率固体激光装置光学元件"缺陷"分布与光束近场质量的定量关系研究. 物理学报, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202
    [5] 周杰, 刘鹏, 黄雷, 朱兴宇, 邵根富. 室内直达与非直达环境无线传播综合信道建模. 物理学报, 2015, 64(17): 170505. doi: 10.7498/aps.64.170505
    [6] 徐可为, 汪 渊. Cu-W薄膜表面形貌的分形表征与电阻率. 物理学报, 2004, 53(3): 900-904. doi: 10.7498/aps.53.900
    [7] 张 闯, 柏连发, 张 毅. 基于灰度空间相关性的双谱微光图像融合方法. 物理学报, 2007, 56(6): 3227-3233. doi: 10.7498/aps.56.3227
    [8] 程 勇, 张 雄, 伍 林, 毛慰明, 尤莉莎. 用离散相关函数方法分析Blazar天体的γ射线和射电辐射的相关性. 物理学报, 2006, 55(2): 988-994. doi: 10.7498/aps.55.988
    [9] 巴斌, 刘国春, 李韬, 林禹丞, 王瑜. 基于哈达玛积扩展子空间的到达时间和波达方向联合估计. 物理学报, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403
    [10] 王凯明, 钟宁, 周海燕. 基于改进功率谱熵的抑郁症脑电信号活跃性研究. 物理学报, 2014, 63(17): 178701. doi: 10.7498/aps.63.178701
    [11] 梁井川, 冯国英, 张澍霖, 兰斌, 周寿桓. 高功率光纤中传输光模式与其波长相关性研究. 物理学报, 2017, 66(19): 194202. doi: 10.7498/aps.66.194202
    [12] 陈秋菊, 姜秋喜, 曾芳玲, 宋长宝. 基于时间反演电磁波的稀疏阵列单频信号空间功率合成. 物理学报, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [13] 翟路生, 金宁德. 小管径气液两相流空隙率波传播的多尺度相关性. 物理学报, 2016, 65(1): 010501. doi: 10.7498/aps.65.010501
    [14] 代正亮, 崔维嘉, 巴斌, 张彦奎. 对称旋转不变相干分布式非圆信号二维波达方向估计. 物理学报, 2017, 66(22): 220701. doi: 10.7498/aps.66.220701
    [15] 秦爽, 王兆华, 王羡之, 何会军, 沈忠伟, 魏志义. 饱和功率密度下线性啁啾对交叉偏振波输出特性的影响. 物理学报, 2017, 66(9): 094206. doi: 10.7498/aps.66.094206
    [16] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究. 物理学报, 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [17] 支 蓉, 张增平, 王启光. Lorenz系统长程相关性研究. 物理学报, 2008, 57(8): 5343-5350. doi: 10.7498/aps.57.5343
    [18] 刘大钊, 王俊, 李锦, 李瑜, 徐文敏, 赵筱. 颠倒睡眠状态调制心率变异性信号的功率谱和基本尺度熵分析. 物理学报, 2014, 63(19): 198703. doi: 10.7498/aps.63.198703
    [19] 马平, 王倩, 华宁, 陆宏, 唐雪正, 唐发宽. 基于心磁信号的心脏电流偶极子阵列成像及相关性质的研究. 物理学报, 2010, 59(4): 2882-2888. doi: 10.7498/aps.59.2882
    [20] 刘桢, 黄洁, 王建涛, 赵拥军, 陈世文. 基于伪相关函数的多级电平编码符号信号通用无模糊跟踪方法. 物理学报, 2017, 66(13): 139101. doi: 10.7498/aps.66.139101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  527
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-25
  • 修回日期:  2014-08-22
  • 刊出日期:  2014-12-20

三维空间域多普勒功率谱及其多天线系统性能

  • 1. 南京信息工程大学电子与信息工程学院, 南京 210044;
  • 2. 日本国立新泻大学工学部电气电子工学科, 新泻 950-2181, 日本
    基金项目: 

    国家自然科学基金(批准号: 61372128, 61471153)、江苏省科技支撑计划(工业)项目(批准号: BE2011195)、江苏省高校自然科学科学研究重大计划项目(批准号: 14KJA510001)和中国博士后基金(批准号: 010986678)资助的课题.

摘要: 在三维(3 dimensional, 3D)空间域信道建模中, 针对波达信号仰角(elevation angle, EA) 在不同覆盖区散射体环境中的分布, 提出了指数型EA仰角概率密度函数并对其信道特征实现建模. 在假设波达信号方位谱为均匀分布时, 采用近似算法在对称和非对称两种情况下导出其多普勒功率谱密度(power spectral density, PSD)闭合表达式. 从分析结果可发现PSD与仰角函数式及波达信号边界角度参数βmin 和βmax关系密切, 并与多普勒频移密切相关. 对该三维空间域中的多输入多输出(multiple input multiple output, MIMO)多天线信号衰落相关性(spatial fading correlation, SFC)进行了推导和仿真. 结果表明MIMO多天线阵元间SFC与βmin和βmax关系密切, 而EA仰角概率密度函数参数n 对SFC影响较小. 本文引入的指数型EA仰角概率密度函数可应用于多种无线通信环境下的信道参数估计, 且与传统模型对比表明本模型的信道参数估计结果符合理论和经验值, 拓展了对3D空间域统计信道的建模与MIMO多天线分析计算.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回