搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电光与磁光效应的互补特性及其传感应用

李长胜

引用本文:
Citation:

电光与磁光效应的互补特性及其传感应用

李长胜

Mutual compensation property of electrooptic and magnetooptic effects and its application to sensor

Li Chang-Sheng
PDF
导出引用
  • 研究了兼有电光效应和磁光效应的晶体内电光与磁光效应的互补特性及其传感应用. 在光强度调制条件下, 晶体中偏振光波的电光调制与磁光调制具有互相补偿的效果, 从而能够使输出光强度保持为一个固定值. 基于这种互补特性, 提出了一种利用单块闪烁锗酸铋(Bi4Ge3O12, BGO)晶体的电光补偿型光学电流(磁场)传感器, 其光学传感单元由两个偏振器和一块平行四边形BGO晶体组成. 该晶体自身能够产生π/2的光学相位偏置, 同时兼用作电流传感和电光补偿元件, 通过控制BGO晶体的外加电压, 能够实时补偿被测电流(磁场)变化引起的磁光旋转角和输出光强度的变化, 从而实现电流(磁场)的闭环光学测量. 实验测量了5.0 A范围内的工频交流电流, 所需要的电光补偿电压约为21.2 V/A, 补偿电压与被测电流之间具有良好的线性关系, 其非线性误差低于1.7%.
    Mutual compensation property between electrooptic and magnetooptic modulations in a crystal with electrooptic and magnetooptic effects and its application to magnetooptic sensor are investigated theoretically and experimentally. Under the condition of light intensity modulation, electrooptic and magnetooptic modulation effects can compensate for each other, so that the transmitted light intensity through the crystal can be kept at a certain fixed value. Based on this mutual compensation property, a novel optical current (or magnetic field) sensor is proposed and demonstrated experimentally by use of a single bismuth germanate (Bi4Ge3O12, BGO) crystal. The optical sensing unit is composed mainly of two polarizers and a block of BGO crystal with the shape of parallelogram. The BGO crystal itself can produce an optical phase bias of π/2, and it can be used as both a current sensing element and an electrooptic compensator. The change of magnetooptic rotation angle through the crystal can be compensated in real time by the change of electrooptic phase retardation caused by the applied voltage, thus the closed-loop optical measurement of current (or magnetic field) can be achieved. The 50 Hz ac current within 5 A is measured experimentally. The required compensating ac voltage is about 21.2 V/A in root-mean-square value. Experimental data show a good linear relationship between measured current and compensating voltage, and the nonlinear error is less than 1.7%.
    [1]

    Buhrer C F, Ho L, Zucker J 1964 Appl. Opt. 3 517

    [2]

    Tabor W J, Chen F S 1969 J. Appl. Phys. 40 2760

    [3]

    Li C S, Cui X 1998 Acta Photon. Sin. 27 122 (in Chinese) [李长胜, 崔翔 1998 光子学报 27 122]

    [4]

    Rogers A J 1977 Opt. Laser Technol. 9 273

    [5]

    Li C, Yoshino T 2002 Appl. Opt. 41 5391

    [6]

    Li C, Cui X, Yoshino T 2003 J. Lightwave Technol. 21 1328

    [7]

    Li C, Yoshino T 2012 Appl. Opt. 51 5119

    [8]

    Li C S 2012 Acta Opt. Sin. 32 0123002 (in Chinese) [李长胜 2012 光学学报 32 0123002]

    [9]

    Li C S, Zeng Z, He X L 2014 J. Optoelectron. Lasers 25 239 (in Chinese) [李长胜, 曾张, 何小玲 2014 光电子·激光 25 239 ]

    [10]

    Li C, Zeng R 2014 IEEE Sensors J. 14 79

    [11]

    Li C, Zeng Z, He X 2014 Infrared Laser Eng. 43 3036

    [12]

    Wen F, Wu B J, Li Z, Li S B 2013 Acta Phys. Sin. 62 130701 (in Chinese) [文峰, 武保剑, 李智, 李述标 2013 物理学报 62 130701]

    [13]

    Chen W, Wei Z, Guo L, Hou L Y, Wang G, Wang J D, Zhang Z M, Guo J P, Liu S H 2014 Chin. Phys. B 23 080304

    [14]

    Xu J, Chen L X, Zheng G L, Wang H C, She W L 2007 Acta Phys. Sin. 56 4615 (in Chinese) [许婕, 陈理想, 郑国梁, 王红成, 佘卫龙 2007 物理学报 56 4615]

    [15]

    Wang H Y, Jia W Y, Shen J X 1985 Acta Phys. Sin. 34 126 (in Chinese) [王焕元, 贾惟义, 沈建祥 1985 物理学报 34 126]

  • [1]

    Buhrer C F, Ho L, Zucker J 1964 Appl. Opt. 3 517

    [2]

    Tabor W J, Chen F S 1969 J. Appl. Phys. 40 2760

    [3]

    Li C S, Cui X 1998 Acta Photon. Sin. 27 122 (in Chinese) [李长胜, 崔翔 1998 光子学报 27 122]

    [4]

    Rogers A J 1977 Opt. Laser Technol. 9 273

    [5]

    Li C, Yoshino T 2002 Appl. Opt. 41 5391

    [6]

    Li C, Cui X, Yoshino T 2003 J. Lightwave Technol. 21 1328

    [7]

    Li C, Yoshino T 2012 Appl. Opt. 51 5119

    [8]

    Li C S 2012 Acta Opt. Sin. 32 0123002 (in Chinese) [李长胜 2012 光学学报 32 0123002]

    [9]

    Li C S, Zeng Z, He X L 2014 J. Optoelectron. Lasers 25 239 (in Chinese) [李长胜, 曾张, 何小玲 2014 光电子·激光 25 239 ]

    [10]

    Li C, Zeng R 2014 IEEE Sensors J. 14 79

    [11]

    Li C, Zeng Z, He X 2014 Infrared Laser Eng. 43 3036

    [12]

    Wen F, Wu B J, Li Z, Li S B 2013 Acta Phys. Sin. 62 130701 (in Chinese) [文峰, 武保剑, 李智, 李述标 2013 物理学报 62 130701]

    [13]

    Chen W, Wei Z, Guo L, Hou L Y, Wang G, Wang J D, Zhang Z M, Guo J P, Liu S H 2014 Chin. Phys. B 23 080304

    [14]

    Xu J, Chen L X, Zheng G L, Wang H C, She W L 2007 Acta Phys. Sin. 56 4615 (in Chinese) [许婕, 陈理想, 郑国梁, 王红成, 佘卫龙 2007 物理学报 56 4615]

    [15]

    Wang H Y, Jia W Y, Shen J X 1985 Acta Phys. Sin. 34 126 (in Chinese) [王焕元, 贾惟义, 沈建祥 1985 物理学报 34 126]

计量
  • 文章访问数:  2152
  • PDF下载量:  465
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-07
  • 修回日期:  2014-09-28
  • 刊出日期:  2015-02-05

电光与磁光效应的互补特性及其传感应用

  • 1. 北京航空航天大学仪器科学与光电工程学院光电工程系, 北京 100191

摘要: 研究了兼有电光效应和磁光效应的晶体内电光与磁光效应的互补特性及其传感应用. 在光强度调制条件下, 晶体中偏振光波的电光调制与磁光调制具有互相补偿的效果, 从而能够使输出光强度保持为一个固定值. 基于这种互补特性, 提出了一种利用单块闪烁锗酸铋(Bi4Ge3O12, BGO)晶体的电光补偿型光学电流(磁场)传感器, 其光学传感单元由两个偏振器和一块平行四边形BGO晶体组成. 该晶体自身能够产生π/2的光学相位偏置, 同时兼用作电流传感和电光补偿元件, 通过控制BGO晶体的外加电压, 能够实时补偿被测电流(磁场)变化引起的磁光旋转角和输出光强度的变化, 从而实现电流(磁场)的闭环光学测量. 实验测量了5.0 A范围内的工频交流电流, 所需要的电光补偿电压约为21.2 V/A, 补偿电压与被测电流之间具有良好的线性关系, 其非线性误差低于1.7%.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回