搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢原子吸附对金表面金属酞菁分子的吸附位置、自旋和手征性的调控

肖文德 刘立巍 杨锴 张礼智 宋博群 杜世萱 高鸿钧

氢原子吸附对金表面金属酞菁分子的吸附位置、自旋和手征性的调控

肖文德, 刘立巍, 杨锴, 张礼智, 宋博群, 杜世萱, 高鸿钧
PDF
导出引用
  • 实现单个功能有机分子构型、电子结构和自旋态的可逆调控, 是未来分子电子学和分子自旋电子学应用的关键. 近年来, 我们利用极低温强磁场超高真空扫描隧道显微镜系统, 结合第一性原理计算, 系统研究了氢原子吸附对金表面吸附的金属酞菁分子的自旋、手性和吸附位置的调控. 通过将金表面吸附的酞菁锰分子暴露于氢气或氢原子环境, 使得分子中心的磁性离子吸附单个氢原子, 从而实现了体系近藤效应由开到关的转变. 基于密度泛函理论的第一性原理计算表明, 氢原子吸附使得锰离子3d轨道内的电荷重排导致了分子的自旋由3/2降为1; 同时分子与金基底的间距增大, 使得近藤效应消失. 通过施加局域电压脉冲或者给样品加热, 可以实现单个或所有分子脱氢, 从而恢复体系的自旋态和近藤效应. 氢原子吸附还导致分子的优先吸附位置从金表面的面心立方堆垛区域变成了六角密排堆垛区域. 三个氢原子吸附于同一酞菁锰分子上, 可导致分子对称性的降低及分子镜面对称轴与金基底镜面对称轴的偏离, 从而导致手征性的出现. 这种分子吸附结构的手征性, 导致分子轨道也呈现出手征性. 这项工作为金属酞菁未来在分子电子学、自旋电子学、气体传感器等方面的应用提供了新思路.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2009CB929103, 2011CB921702)和国家自然科学基金(批准号: 20973196, 10834011, 60921092)资助的课题.
    [1]

    Aradhya S V, Venkataraman L 2013 Nature Nanotech. 8 399

    [2]

    Bogani L, Wernsdorfer W 2008 Nature Mater. 7 179

    [3]

    Song H, Reed M A, Lee T 2011 Adv. Mater. 23 1583

    [4]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57

    [5]

    Liao M S, Scheiner S 2001 J. Chem. Phys. 114 9780

    [6]

    Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542

    [7]

    Fu Y S, Ji S H, Chen X, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F, Xue Q K 2007 Phys. Rev. Lett. 99 256601

    [8]

    Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C, Gao H J 2007 Phys. Rev. Lett. 99 106402

    [9]

    Wang Y F, Kröger J, Berndt R, Hofer W A 2009 J. Am. Chem. Soc. 131 3639

    [10]

    Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Li L F, Zhou H T, Wang Y L, Du S X, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Scientific Reports 3 1210

    [11]

    Liu L W, Yang K, Xiao W D, Jiang Y H, Song B Q, Du S X, Gao H J 2013 Appl. Phys. Lett. 103 023110

    [12]

    Yang K, Liu L W, Zhang L Z, Xiao W D, Fei X M, Chen H, Du S X, Ernst K H, Gao H J 2014 ACS Nano 8 2246

    [13]

    Kresse G 1995 Phys. Rev. B 47 558(R)

    [14]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [15]

    Barth J V, Brune H, Ertl G, Behm R J 1990 Phys. Rev. B 42 9307

    [16]

    Jiang Y H, Liu L W, Yang K, Xiao W D, Gao H J 2011 Chin. Phys. B 20 096401

    [17]

    Jiang Y H, Xiao W D, Liu L W, Zhang L Z, Lian J C, Yang K, Du S X, Gao H J 2011 J. Phys. Chem. C 115 21750

    [18]

    Mao J H, Zhang H G, Jiang Y H, Pan Y, Gao M, Xiao W D, Gao H J 2009 J. Am. Chem. Soc. 131 14136

    [19]

    Yang K, Xiao W D, Jiang Y H, Zhang H G, Liu L W, Mao J H, Zhou H T, Du S X, Gao H J 2012 J. Phys. Chem. C 116 14052

    [20]

    Mao H K, Hemley R J 1994 Rev. Mod. Phys. 66 671

    [21]

    Gupta J A, Lutz C P, Heinrich A J, Eigler D M 2005 Phys. Rev. B 71 115416

    [22]

    Yang K, Xiao W D, Liu L W, Fei X M, Chen H, Du S X, Gao H J 2014 Nano Research 7 79

    [23]

    Xiao W D, Ruffieux P, Ait-Mansour K, Gröning O, Palotas K, Hofer W A, Gröning P, Fasel R 2006 J. Phys. Chem. B 110 21394

    [24]

    Böhringer M, Morgenstern K, Schneider W D, Whn M, Wöll C, Berndt R 2000 Surf. Sci. 444 199

    [25]

    Cheng Z H, Gao L, Deng Z T, Jiang N, Liu Q, Shi D X, Du S X, Guo H M, Gao H J 2007 J. Phys. Chem. C 111 9240

    [26]

    Fernandez-Torrente I, Monturet S, Franke K J, Fraxedas J, Lorente N, Pascual J I 2007 Phys. Rev. Lett. 99 176103

    [27]

    Fano U 1961 Phys. Rev. 124 1866

    [28]

    Tersoff J, Hamann D R 1983 Phys. Rev. Lett. 50 1998

    [29]

    Hewson A C 1993 The Kondo problem to heavy fermions (Cambridge University Press)

  • [1]

    Aradhya S V, Venkataraman L 2013 Nature Nanotech. 8 399

    [2]

    Bogani L, Wernsdorfer W 2008 Nature Mater. 7 179

    [3]

    Song H, Reed M A, Lee T 2011 Adv. Mater. 23 1583

    [4]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57

    [5]

    Liao M S, Scheiner S 2001 J. Chem. Phys. 114 9780

    [6]

    Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542

    [7]

    Fu Y S, Ji S H, Chen X, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F, Xue Q K 2007 Phys. Rev. Lett. 99 256601

    [8]

    Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C, Gao H J 2007 Phys. Rev. Lett. 99 106402

    [9]

    Wang Y F, Kröger J, Berndt R, Hofer W A 2009 J. Am. Chem. Soc. 131 3639

    [10]

    Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Li L F, Zhou H T, Wang Y L, Du S X, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Scientific Reports 3 1210

    [11]

    Liu L W, Yang K, Xiao W D, Jiang Y H, Song B Q, Du S X, Gao H J 2013 Appl. Phys. Lett. 103 023110

    [12]

    Yang K, Liu L W, Zhang L Z, Xiao W D, Fei X M, Chen H, Du S X, Ernst K H, Gao H J 2014 ACS Nano 8 2246

    [13]

    Kresse G 1995 Phys. Rev. B 47 558(R)

    [14]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [15]

    Barth J V, Brune H, Ertl G, Behm R J 1990 Phys. Rev. B 42 9307

    [16]

    Jiang Y H, Liu L W, Yang K, Xiao W D, Gao H J 2011 Chin. Phys. B 20 096401

    [17]

    Jiang Y H, Xiao W D, Liu L W, Zhang L Z, Lian J C, Yang K, Du S X, Gao H J 2011 J. Phys. Chem. C 115 21750

    [18]

    Mao J H, Zhang H G, Jiang Y H, Pan Y, Gao M, Xiao W D, Gao H J 2009 J. Am. Chem. Soc. 131 14136

    [19]

    Yang K, Xiao W D, Jiang Y H, Zhang H G, Liu L W, Mao J H, Zhou H T, Du S X, Gao H J 2012 J. Phys. Chem. C 116 14052

    [20]

    Mao H K, Hemley R J 1994 Rev. Mod. Phys. 66 671

    [21]

    Gupta J A, Lutz C P, Heinrich A J, Eigler D M 2005 Phys. Rev. B 71 115416

    [22]

    Yang K, Xiao W D, Liu L W, Fei X M, Chen H, Du S X, Gao H J 2014 Nano Research 7 79

    [23]

    Xiao W D, Ruffieux P, Ait-Mansour K, Gröning O, Palotas K, Hofer W A, Gröning P, Fasel R 2006 J. Phys. Chem. B 110 21394

    [24]

    Böhringer M, Morgenstern K, Schneider W D, Whn M, Wöll C, Berndt R 2000 Surf. Sci. 444 199

    [25]

    Cheng Z H, Gao L, Deng Z T, Jiang N, Liu Q, Shi D X, Du S X, Guo H M, Gao H J 2007 J. Phys. Chem. C 111 9240

    [26]

    Fernandez-Torrente I, Monturet S, Franke K J, Fraxedas J, Lorente N, Pascual J I 2007 Phys. Rev. Lett. 99 176103

    [27]

    Fano U 1961 Phys. Rev. 124 1866

    [28]

    Tersoff J, Hamann D R 1983 Phys. Rev. Lett. 50 1998

    [29]

    Hewson A C 1993 The Kondo problem to heavy fermions (Cambridge University Press)

  • [1] 李群祥, 杨金龙, 李震宇, 侯建国, 朱清时. 第一过渡金属酞菁分子的电子结构的第一性原理计算. 物理学报, 2001, 50(10): 1877-1883. doi: 10.7498/aps.50.1877
    [2] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [3] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [4] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [5] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [6] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [7] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [8] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
    [9] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [10] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [11] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [12] 郝万军, 李 畅, 魏英进, 陈 岗, 许 武. Li(AlxCo1-x)O2晶体中Co3+电子态的变化及对结构演化的影响. 物理学报, 2003, 52(4): 1023-1027. doi: 10.7498/aps.52.1023
    [13] 郭辉, 路红亮, 黄立, 王雪艳, 林晓, 王业亮, 杜世萱, 高鸿钧. 金属衬底上高质量大面积石墨烯的插层及其机制. 物理学报, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [14] 冯卫, 赵爱迪. 钴原子及其团簇在Rh(111)和Pd(111)表面的扫描隧道显微学研究. 物理学报, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [15] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [16] 闫隆, 张永平, 彭毅萍, 庞世谨, 高鸿钧. Ge在Si(111)7×7表面的选择性吸附. 物理学报, 2001, 50(11): 2132-2136. doi: 10.7498/aps.50.2132
    [17] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [18] 尤思凡, 孙鲁晔, 郭静, 裘晓辉, 江颖. 表/界面水的扫描探针技术研究进展. 物理学报, 2019, 68(1): 016802. doi: 10.7498/aps.68.20182201
    [19] 李群祥, 杨金龙, 袁岚峰, 侯建国, 朱清时. 钒氧酞菁(VOPc)与钒酞菁(VPc)分子的扫描隧道显微镜图像模拟. 物理学报, 2002, 51(3): 609-615. doi: 10.7498/aps.51.609
    [20] 杜文汉. SrO/Si(100)表面去氧过程的研究. 物理学报, 2010, 59(5): 3357-3361. doi: 10.7498/aps.59.3357
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1741
  • PDF下载量:  582
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-12
  • 修回日期:  2015-02-06
  • 刊出日期:  2015-04-05

氢原子吸附对金表面金属酞菁分子的吸附位置、自旋和手征性的调控

  • 1. 中国科学院物理研究所, 纳米物理与器件实验室, 北京 100190
    基金项目: 

    国家重点基础研究发展计划(批准号: 2009CB929103, 2011CB921702)和国家自然科学基金(批准号: 20973196, 10834011, 60921092)资助的课题.

摘要: 实现单个功能有机分子构型、电子结构和自旋态的可逆调控, 是未来分子电子学和分子自旋电子学应用的关键. 近年来, 我们利用极低温强磁场超高真空扫描隧道显微镜系统, 结合第一性原理计算, 系统研究了氢原子吸附对金表面吸附的金属酞菁分子的自旋、手性和吸附位置的调控. 通过将金表面吸附的酞菁锰分子暴露于氢气或氢原子环境, 使得分子中心的磁性离子吸附单个氢原子, 从而实现了体系近藤效应由开到关的转变. 基于密度泛函理论的第一性原理计算表明, 氢原子吸附使得锰离子3d轨道内的电荷重排导致了分子的自旋由3/2降为1; 同时分子与金基底的间距增大, 使得近藤效应消失. 通过施加局域电压脉冲或者给样品加热, 可以实现单个或所有分子脱氢, 从而恢复体系的自旋态和近藤效应. 氢原子吸附还导致分子的优先吸附位置从金表面的面心立方堆垛区域变成了六角密排堆垛区域. 三个氢原子吸附于同一酞菁锰分子上, 可导致分子对称性的降低及分子镜面对称轴与金基底镜面对称轴的偏离, 从而导致手征性的出现. 这种分子吸附结构的手征性, 导致分子轨道也呈现出手征性. 这项工作为金属酞菁未来在分子电子学、自旋电子学、气体传感器等方面的应用提供了新思路.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回