搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子辐射下互补金属氧化物半导体有源像素传感器暗信号退化机理研究

汪波 李豫东 郭旗 刘昌举 文林 任迪远 曾骏哲 玛丽娅

引用本文:
Citation:

质子辐射下互补金属氧化物半导体有源像素传感器暗信号退化机理研究

汪波, 李豫东, 郭旗, 刘昌举, 文林, 任迪远, 曾骏哲, 玛丽娅

Dark signal degradation in proton-irradiated complementary metal oxide semiconductor active pixel sensor

Wang Bo, Li Yu-Dong, Guo Qi, Liu Chang-Ju, Wen Lin, Ren Di-Yuan, Zeng Jun-Zhe, Ma Li-Ya
PDF
导出引用
  • 对某国产0.5 μm工艺制造的互补金属氧化物半导体有源像素传感器进行了10 MeV质子辐射试验, 当辐射注量达到预定注量点时, 采用离线的测试方法, 定量测试了器件暗信号的变化情况. 试验结果表明, 随着辐射注量的增加暗信号迅速增大. 采用MULASSIS (multi-layered shielding simulation software)软件计算了电离损伤剂量和位移损伤剂量, 在与γ辐射试验数据对比的基础上, 结合器件结构和工艺参数, 建立了分离质子辐射引起的电离效应和位移效应理论模型, 深入分析了器件暗信号的退化机理. 研究结果表明, 对该国产器件而言, 电离效应导致的表面暗信号和位移效应导致的体暗信号对整个器件暗信号退化的贡献大致相当.
    In this paper, we discuss the dark signal increase in complementary metal oxide semiconductor (CMOS) active pixel sensor due to proton-induced damage, and present the basic mechanism that may cause failure. When the fluence of protons reaches a predetermined point, the change of dark signal of the device is measured offline. The experimental result shows that as the fluence of protons increases, mean dark signal increases rapidly. The main reason for dark signal degradation is: 1) the ionizing damage causes a build-up of oxide trapped charge and interface state at the Si-SiO2 interface. The creation of the interface traps (with energy levels within the silicon bandgap), which can communicate with carriers in the silicon, gives rise to the thermal generation of the electron-hole pairs and, hence increasing the dark signals; 2) when protons pass through the sensor, there is a possibility of collisions with silicon lattice atoms in the bulk silicon. In these collisions, atoms can be displaced from their lattice sites and defects are formed. These resulting defects can give rise to states with energy levels within the forbidden bandgap. The increasing of dark signal is therefore one of the prominent consequences of bulk displacement. We use multi-layered shielding simulation software to calculate the ionization damage dose and displacement damage dose. Based on the comparison of the test data of gamma radiation, combined with the device structure and process parameters, a theoretical model for separation proton-induced ionization and displacement damage effects on CMOS active pixel is constructed, and the degradation mechanism of the mean dark signal is investigated. The result shows that the contribution of ionization effect induced surface dark signal and the contribution of displacement damage induced bulk dark signal to dark signal degradation of the whole device are roughly equal in this domestic CMOS active pixel.
    • 基金项目: 国家自然科学基金(批准号: 11005152)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11005152).
    [1]

    Dai S W, Jia Y Z, Zhang B M, Wu J, Sun H X, Liu E H, Wei J Y, Chen B, Huang C N, Xue C B, Yang J F, Fang G Y, Wang J Y, Wang H Y, An J S 2014 Sci. China Technol. Sin. 44 361 (in Chinese) [代树武, 贾瑛卓, 张宝明, 吴季, 孙辉先, 刘恩海, 魏建彦, 陈波, 黄长宁, 薛长斌, 杨建峰, 方广有, 王建宇, 王焕玉, 安军社 2014 中国科学 技术科学 44 361]

    [2]

    Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ma L Y, Sun J, Wang H J, Cong Z C, Ma W Y 2014 Acta Phys. Sin. 63 056102 (in Chinese) [汪波, 李豫东, 郭旗, 刘昌举, 文林, 玛丽娅, 孙静, 王海娇, 丛忠超, 马武英 2014 物理学报 63 056102]

    [3]

    Zhang X F, Li Y D, Guo Q, Luo M C, He C F, Yu X, Shen Z H, Zhang X Y, Deng W, Wu Z X 2013 Acta Phys. Sin. 62 076106 (in Chinese) [张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新 2013 物理学报 62 076106]

    [4]

    Holmes S, Adams L 1993 Handbook of Radiation Effects (New York: Oxford University Press) pp16-45

    [5]

    Goiffon V, Magnan P, Saint O, Bernard F, Rolland G 2008 IEEE Trans. Nucl. Sci. 55 3494

    [6]

    Bogaerts J, Dierickx B, Mertens R 2002 IEEE Trans. Nucl. Sci. 49 1513

    [7]

    Beaumel M, Herve D, van Aken D 2010 IEEE Trans. Nucl. Sci. 57 2056

    [8]

    Virmontois C, Goiffon V, Magnan P, Girard S, Saint O, Petit S, Rolland G, Bardoux A 2012 IEEE Trans. Nucl. Sci. 59 927

    [9]

    Li Y D, Wang B, Guo Q, Ma L Y, Ren J W 2013 Opt. Precision Eng. 21 42 (in Chinese) [李豫东, 汪波, 郭旗, 玛丽娅, 任建伟 2013 光学 精密工程 21 42]

    [10]

    Sze S, Ng K 2007 Physics of Semiconductor Devices (New York: John Wiley & Sons) pp7-68

    [11]

    Sze S, Ng K 2007 Physics of Semiconductor Devices (New York: John Wiley & Sons) pp80-118

    [12]

    Gao B, Liu G, Wang L X, Han Z S, Zhang Y F, Wang C L, Wen J C 2012 Acta Phys. Sin. 61 176107 (in Chinese) [高博, 刘刚, 王立新, 韩郑生, 张彦飞, 王春林, 温景超 2012 物理学报 61 176107]

    [13]

    Hopkinson G 2000 IEEE Trans. Nucl. Sci. 47 2480

    [14]

    Bogaerts J, Dierickx B, Meynants G, Uwaerts D 2003 IEEE Trans. Elec. Dev. 50 84

    [15]

    Zhao S, Wang S J 2010 Microcomputer Inform. 34 193 (in Chinese) [赵爽, 王世金 2010 微计算机信息 34 193]

    [16]

    Goiffon V, Magnan P, Saint-Pé O, Bernard F, Rolland G 2009 Nucl. Instrum. Meth. A 610 225

    [17]

    Boch J, Saigne F, Schrimpf R, Fleetwood D, Cizmarik R, Zander D 2004 IEEE Trans. Nucl. Sci. 51 2903

    [18]

    Goiffon V, Virmontois C, Magnan P, Girard S, Paillet P 2010 IEEE Trans. Nucl. Sci. 57 3087

    [19]

    Adamec V, Calderwood J 1975 J. Phys. D: Appl. Phys. 8 551

    [20]

    Srour J, Marshall C, Marshall P 2003 IEEE Trans. Nucl. Sci. 50 653

  • [1]

    Dai S W, Jia Y Z, Zhang B M, Wu J, Sun H X, Liu E H, Wei J Y, Chen B, Huang C N, Xue C B, Yang J F, Fang G Y, Wang J Y, Wang H Y, An J S 2014 Sci. China Technol. Sin. 44 361 (in Chinese) [代树武, 贾瑛卓, 张宝明, 吴季, 孙辉先, 刘恩海, 魏建彦, 陈波, 黄长宁, 薛长斌, 杨建峰, 方广有, 王建宇, 王焕玉, 安军社 2014 中国科学 技术科学 44 361]

    [2]

    Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ma L Y, Sun J, Wang H J, Cong Z C, Ma W Y 2014 Acta Phys. Sin. 63 056102 (in Chinese) [汪波, 李豫东, 郭旗, 刘昌举, 文林, 玛丽娅, 孙静, 王海娇, 丛忠超, 马武英 2014 物理学报 63 056102]

    [3]

    Zhang X F, Li Y D, Guo Q, Luo M C, He C F, Yu X, Shen Z H, Zhang X Y, Deng W, Wu Z X 2013 Acta Phys. Sin. 62 076106 (in Chinese) [张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新 2013 物理学报 62 076106]

    [4]

    Holmes S, Adams L 1993 Handbook of Radiation Effects (New York: Oxford University Press) pp16-45

    [5]

    Goiffon V, Magnan P, Saint O, Bernard F, Rolland G 2008 IEEE Trans. Nucl. Sci. 55 3494

    [6]

    Bogaerts J, Dierickx B, Mertens R 2002 IEEE Trans. Nucl. Sci. 49 1513

    [7]

    Beaumel M, Herve D, van Aken D 2010 IEEE Trans. Nucl. Sci. 57 2056

    [8]

    Virmontois C, Goiffon V, Magnan P, Girard S, Saint O, Petit S, Rolland G, Bardoux A 2012 IEEE Trans. Nucl. Sci. 59 927

    [9]

    Li Y D, Wang B, Guo Q, Ma L Y, Ren J W 2013 Opt. Precision Eng. 21 42 (in Chinese) [李豫东, 汪波, 郭旗, 玛丽娅, 任建伟 2013 光学 精密工程 21 42]

    [10]

    Sze S, Ng K 2007 Physics of Semiconductor Devices (New York: John Wiley & Sons) pp7-68

    [11]

    Sze S, Ng K 2007 Physics of Semiconductor Devices (New York: John Wiley & Sons) pp80-118

    [12]

    Gao B, Liu G, Wang L X, Han Z S, Zhang Y F, Wang C L, Wen J C 2012 Acta Phys. Sin. 61 176107 (in Chinese) [高博, 刘刚, 王立新, 韩郑生, 张彦飞, 王春林, 温景超 2012 物理学报 61 176107]

    [13]

    Hopkinson G 2000 IEEE Trans. Nucl. Sci. 47 2480

    [14]

    Bogaerts J, Dierickx B, Meynants G, Uwaerts D 2003 IEEE Trans. Elec. Dev. 50 84

    [15]

    Zhao S, Wang S J 2010 Microcomputer Inform. 34 193 (in Chinese) [赵爽, 王世金 2010 微计算机信息 34 193]

    [16]

    Goiffon V, Magnan P, Saint-Pé O, Bernard F, Rolland G 2009 Nucl. Instrum. Meth. A 610 225

    [17]

    Boch J, Saigne F, Schrimpf R, Fleetwood D, Cizmarik R, Zander D 2004 IEEE Trans. Nucl. Sci. 51 2903

    [18]

    Goiffon V, Virmontois C, Magnan P, Girard S, Paillet P 2010 IEEE Trans. Nucl. Sci. 57 3087

    [19]

    Adamec V, Calderwood J 1975 J. Phys. D: Appl. Phys. 8 551

    [20]

    Srour J, Marshall C, Marshall P 2003 IEEE Trans. Nucl. Sci. 50 653

  • [1] 冯婕, 崔益豪, 李豫东, 文林, 郭旗. CMOS有源像素传感器辐射损伤对星敏感器星图识别影响机理与识别算法. 物理学报, 2022, 71(18): 184208. doi: 10.7498/aps.71.20220894
    [2] 马武英, 姚志斌, 何宝平, 王祖军, 刘敏波, 刘静, 盛江坤, 董观涛, 薛院院. 65 nm互补金属氧化物半导体场效应和晶体管总剂量效应及损伤机制. 物理学报, 2018, 67(14): 146103. doi: 10.7498/aps.67.20172542
    [3] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [4] 张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进. 太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究. 物理学报, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [5] 郑齐文, 崔江维, 王汉宁, 周航, 余徳昭, 魏莹, 苏丹丹. 超深亚微米互补金属氧化物半导体器件的剂量率效应. 物理学报, 2016, 65(7): 076102. doi: 10.7498/aps.65.076102
    [6] 王帆, 李豫东, 郭旗, 汪波, 张兴尧, 文林, 何承发. 基于4晶体管像素结构的互补金属氧化物半导体图像传感器总剂量辐射效应研究. 物理学报, 2016, 65(2): 024212. doi: 10.7498/aps.65.024212
    [7] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [8] 曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航. 质子与中子辐照对电荷耦合器件暗信号参数的影响及其效应分析. 物理学报, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [9] 曾骏哲, 何承发, 李豫东, 郭旗, 文林, 汪波, 玛丽娅, 王海娇. 电荷耦合器件在质子辐照下的粒子输运仿真与效应分析. 物理学报, 2015, 64(11): 114214. doi: 10.7498/aps.64.114214
    [10] 陈睿, 余永涛, 上官士鹏, 封国强, 韩建伟. 90 nm互补金属氧化物半导体静态随机存储器局部单粒子闩锁传播效应诱发多位翻转的机理. 物理学报, 2014, 63(12): 128501. doi: 10.7498/aps.63.128501
    [11] 汪波, 李豫东, 郭旗, 刘昌举, 文林, 玛丽娅, 孙静, 王海娇, 丛忠超, 马武英. 60Co-γ射线辐照CMOS有源像素传感器诱发暗信号退化的机理研究. 物理学报, 2014, 63(5): 056102. doi: 10.7498/aps.63.056102
    [12] 岳龙, 吴宜勇, 张延清, 胡建民, 孙承月, 郝明明, 兰慕杰. 质子辐射损伤对单结GaAs/Ge太阳电池暗特性参数的影响. 物理学报, 2014, 63(18): 188101. doi: 10.7498/aps.63.188101
    [13] 车驰, 柳青峰, 马晶, 周彦平. 位移效应对量子点激光器的性能影响. 物理学报, 2013, 62(9): 094219. doi: 10.7498/aps.62.094219
    [14] 范雪, 李威, 李平, 张斌, 谢小东, 王刚, 胡滨, 翟亚红. 基于环形栅和半环形栅N沟道金属氧化物半导体晶体管的总剂量辐射效应研究. 物理学报, 2012, 61(1): 016106. doi: 10.7498/aps.61.016106
    [15] 马晶, 车驰, 韩琦琦, 周彦平, 谭立英. 位移辐射效应对量子阱激光器性能的影响. 物理学报, 2012, 61(21): 214211. doi: 10.7498/aps.61.214211
    [16] 孙鹏, 杜磊, 陈文豪, 何亮, 张晓芳. 金属-氧化物-半导体场效应管辐射效应模型研究. 物理学报, 2012, 61(10): 107803. doi: 10.7498/aps.61.107803
    [17] 高博, 余学峰, 任迪远, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究. 物理学报, 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [18] 何宝平, 姚志斌. 互补金属氧化物半导体器件空间低剂量率辐射效应预估模型研究. 物理学报, 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [19] 郭红霞, 陈雨生, 张义门, 周辉, 龚建成, 韩福斌, 关颖, 吴国荣. 稳态、瞬态X射线辐照引起的互补性金属-氧化物-半导体器件剂量增强效应研究. 物理学报, 2001, 50(12): 2279-2283. doi: 10.7498/aps.50.2279
    [20] 王剑屏, 徐娜军, 张廷庆, 汤华莲, 刘家璐, 刘传洋, 姚育娟, 彭宏论, 何宝平, 张正选. 金属-氧化物-半导体器件γ辐照温度效应. 物理学报, 2000, 49(7): 1331-1334. doi: 10.7498/aps.49.1331
计量
  • 文章访问数:  5119
  • PDF下载量:  3876
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-30
  • 修回日期:  2014-11-07
  • 刊出日期:  2015-04-05

/

返回文章
返回