搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准一维半导体量子点中电偶极自旋共振的物理机理

李睿

准一维半导体量子点中电偶极自旋共振的物理机理

李睿
PDF
导出引用
导出核心图
  • 半导体量子点中的电子自旋具有较长相干时间以及可扩展性的特点, 在近十几年来引起了人们的广泛兴趣. 人们常常利用电子自旋共振技术来对单个自旋进行操纵. 这样不但需要一个静磁场来使电子产生赛曼劈裂, 同时还需要一个与之垂直的局域振荡磁场. 但是, 在实验上产生足够强且具有固定频率的局域磁场是比较困难的. 后来人们发现, 局域的振荡电场也可以操纵单个电子自旋, 也就是所谓的电偶极自旋共振. 众所周知, 自旋只有自旋磁矩, 不会与电场有任何直接的相互作用. 所以, 电偶极自旋共振的发生必须依赖于某些媒质. 这些媒质包括:量子点材料中的自旋轨道耦合作用, 量子点中的局域磁场梯度, 以及量子点中电子自旋与核自旋的超精细相互作用. 这些媒质能诱导出自旋与电场之间间接的相互作用, 从而外电场操纵单个电子自旋得以实现. 本文总结归纳了目前半导体量子点系统中发生电偶极自旋共振的三种主要物理机理.
    • 基金项目: 国家自然科学基金(批准号:11404020)和中国博士后科学基金(批准号: 2014M560039)资助的课题.
    [1]

    Nielsen M A, Chuang I L 2002 Quantum Computations and Quantum Information (Cambridge: Cambridge University Press)

    [2]

    Shor P W 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science (Los Alamitos: IEEE Computer Soc. Press)

    [3]

    Buluta I, Ashhab S, Nori F 2011 Rep. Prog. Phys. 74 104401

    [4]

    You J Q, Nori F

    [5]

    You J Q, Nori F 2011 Nature 474 589

    [6]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [7]

    Xiang Z, Yu T, Zhang W, Hu X, You J Q 2012 Sci. China: Phys. Mech. Astron. 55 1549

    [8]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120

    [9]

    Hanson R, Petta J R, Tarucha S, Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217

    [10]

    Awschalom D D, Bassett L C, Dzurak A S, Hu E L, Petta J R 2013 Science 339 1174

    [11]

    Yang Y, Wang A M 2013 Acta Phys. Sin. 62 130305 (in Chinese) [杨阳, 王安民 2013 物理学报 62 130305]

    [12]

    Xie M Q, Guo B 2013 Acta Phys. Sin. 62 130303 (in Chinese) [谢美秋, 郭斌 2013 物理学报 62 130303]

    [13]

    Seo K J, Tian L

    [14]

    Liu D Q, Chang Y C, Liu G Q, Pan X Y 2013 Acta Phys. Sin. 62 164208 (in Chinese) [刘东奇, 常彦春, 刘刚钦, 潘新宇 2013 物理学报 62 164208]

    [15]

    He L M, Ji Y, Wu H Y, Xu B, Sun Y B, Zhang X F, Lu Y, Zhao J J 2014 Chin. Phys. B 23 077601

    [16]

    Wang C, He L Y, Zhang Y 2013 Sci. China: Phys. Mech. Astron. 56 2054

    [17]

    Chen W, Xue Z Y, Wang Z D, Shen R 2014 Chin. Phys. B 23 030309

    [18]

    Yan L, Yin W, Wang F W 2014 Chin. Phys.B 23 100303

    [19]

    Li H, Yao B, Tu T 2012 Chin. Sci. Bull. 57 1919

    [20]

    Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Science 309 2180

    [21]

    Johnson A C, Petta J R, Taylor J M, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Nature 435 925

    [22]

    Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P, Vandersypen L M K 2006 Nature 442 766

    [23]

    Foletti S, Bluhm H, Mahalu D, Umansky V, Yacoby A 2009 Nat. Phys. 5 903

    [24]

    Elzerman J M, Hanson R, Willems van Beveren L H, Witkamp B, Vandersypen L M K, Kouwenhoven L P 2004 Nature 430 431

    [25]

    Barthel C, Reilly D J, Marcus C M, Hanson M P, Gossard A C 2009 Phys. Rev. Lett. 103 160503

    [26]

    Morello A, Pla J J, Zwanenburg F A, Chan K W, Tan K Y, Huebl H, Mottonen M, Nugroho C D, Yang C, van Donkelaar J A, Alves A D C, Jamieson D N, Escott C C, Hollenberg L C L, Clark R G, Dzurak A S 2010 Nature 467 687

    [27]

    Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V, Yacoby A 2011 Nat. Phys. 7 109

    [28]

    Burkard G, Loss D, DiVincenzo D P 1999 Phys. Rev. B 59 2070

    [29]

    Hu X, Das Sarma S 2000 Phys. Rev. A 61 062301

    [30]

    Kestner J P, Wang X, Bishop L S, Barnes E, Das Sarma S 2013 Phys. Rev. Lett. 110 140502

    [31]

    Wang X, Bishop L S, Kestner J P, Barnes E, Sun K, Das Sarma S 2012 Nat. Commun. 3 997

    [32]

    Li R, Hu X, You J Q 2012 Phys. Rev. B 86 205306

    [33]

    Slichter C P 1980 Principles of Magnetic Resonance (Berlin: Springer-Verlag)

    [34]

    Trif M, Golovach V N, Loss D 2008 Phys. Rev. B 77 045434

    [35]

    Hu X, Liu Y X, Nori F 2012 Phys. Rev. B 86 035314

    [36]

    Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A, Dzurak A S 2014 Nat. Nanotechnol. 9 981

    [37]

    Nowack K C, Koppens F H L, Nazarov Y V, Vandersypen L M K 2007 Science 318 1430

    [38]

    Pioro-Ladriere M, Obata T, Tokura Y, Shin Y S, Kubo T, Yoshida K, Taniyama T, Tarucha S 2008 Nat. Phys. 4 776

    [39]

    Tokura Y, van der Wiel W G, Obata T, Tarucha S 2006 Phys. Rev. Lett. 96 047202

    [40]

    Laird E, Barthel C, Rashba E, Marcus C, Hanson M, Gossard A 2007 Phys. Rev. Lett. 99 246601

    [41]

    Nadj-Perge S, Frolov S M, Bakkers E P A M, Kouwenhoven L P 2010 Nature 468 1084

    [42]

    Schroer M D, Petersson K D, Jung M, Petta J R 2011 Phys. Rev. Lett. 107 176811

    [43]

    Nadj-Perge S, Pribiag V S, van den Berg J W G, Zuo K, Plissard S R, Bakkers E P A M, Frolov S M, Kouwenhoven L P 2012 Phys. Rev. Lett. 108 166801

    [44]

    van den Berg J W G, Nadj-Perge S, Pribiag V S, Plissard S R, Bakkers E P A M, Frolov S M, Kouwenhoven L P 2013 Phys. Rev. Lett. 110 066806

    [45]

    Levitov L S, Rashba E I 2003 Phys. Rev. B 67 115324

    [46]

    Zhao N, Zhong L, Zhu J L, Sun C P 2006 Phys. Rev. B 74 075307

    [47]

    Flindt C, Sorensen A S, Flensberg K 2006 Phys. Rev. Lett. 97 240501

    [48]

    Khomitsky D V, Gulyaev L V, Sherman E Y 2012 Phys. Rev. B 85 125312

    [49]

    Ban Y, Chen X, Sherman E Y, Muga J G 2012 Phys. Rev. Lett. 109 206602

    [50]

    Rashba E I, Efros A L 2003 Phys. Rev. Lett. 91 126405

    [51]

    Golovach V N, Borhani M, Loss D 2006 Phys. Rev. B 74 165319

    [52]

    Rashba E I 2008 Phys. Rev. B 78 195302

    [53]

    Li R, You J Q, Sun C P, Nori F 2013 Phys. Rev. Lett. 111 086805

    [54]

    Brunner R, Shin Y S, Obata T, Pioro-Ladriere M, Kubo T, Yoshida K, Taniyama T, Tarucha S 2011 Phys. Rev. Lett. 107 146801

    [55]

    Szechenyi G, Palyi A 2014 Phys. Rev. B 89 115409

    [56]

    Shafiei M, Nowack K C, Reichl C, Wegscheider W, Vandersypen L M K 2013 Phys. Rev. Lett. 110 107601

    [57]

    Osika E N, Szafran B, Nowak M P 2013 Phys. Rev. B 88 165302

    [58]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

    [59]

    Landau L D, Lifshitz E M 1965 Quantum Mechanics, Course of Theoretical Physics (Vol. 3) (New York: Pergamon)

    [60]

    Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer)

    [61]

    Pershin Y V, Nesteroff J A, Privman V 2004 Phys. Rev. B 69 121306(R)

    [62]

    Nowak M P, Szafran B 2013 Phys. Rev. B 87 205436

    [63]

    Li R, You J Q 2014 Phys. Rev. B 90 035303

    [64]

    Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039

    [65]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [66]

    Bulgakov E N, Sadreev A F 2001 JETP Lett. 73 505

    [67]

    Tsitsishvili E, Lozano G S, Gogolin A O 2004 Phys. Rev. B 70 115316

    [68]

    Rashba E I 2012 Phys. Rev. B 86 125319

    [69]

    Coish W A, Loss D 2004 Phys. Rev. B 70 195340

    [70]

    Witzel W M, Das Sarma S 2006 Phys. Rev. B 74 035322

    [71]

    Yao W, Liu R B, Sham L J 2006 Phys. Rev. B 74 195301(R)

    [72]

    Deng C, Hu X 2006 Phys. Rev. B 73 241303(R)

    [73]

    Cywinski L, Witzel W M, Das Sarma S 2009 Phys. Rev. Lett. 102 057601

    [74]

    Li R 2012 Phys. Rev. A 86 032333

    [75]

    Rudner M S, Levitov L S 2007 Phys. Rev. Lett. 99 246602

    [76]

    Khaetskii A V, Nazarov Y V 2001 Phys. Rev. B 64 125316

    [77]

    Cheng J L, Wu M W, Lu C 2004 Phys. Rev. B 69 115318

    [78]

    Golovach V N, Khaetskii A, Loss D 2004 Phys. Rev. Lett. 93 016601

    [79]

    Huang P, Hu X 2014 Phys. Rev. B 89 195302

    [80]

    Jing J, Huang P, Hu X 2014 Phys. Rev. A 90 022118

  • [1]

    Nielsen M A, Chuang I L 2002 Quantum Computations and Quantum Information (Cambridge: Cambridge University Press)

    [2]

    Shor P W 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science (Los Alamitos: IEEE Computer Soc. Press)

    [3]

    Buluta I, Ashhab S, Nori F 2011 Rep. Prog. Phys. 74 104401

    [4]

    You J Q, Nori F

    [5]

    You J Q, Nori F 2011 Nature 474 589

    [6]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [7]

    Xiang Z, Yu T, Zhang W, Hu X, You J Q 2012 Sci. China: Phys. Mech. Astron. 55 1549

    [8]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120

    [9]

    Hanson R, Petta J R, Tarucha S, Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217

    [10]

    Awschalom D D, Bassett L C, Dzurak A S, Hu E L, Petta J R 2013 Science 339 1174

    [11]

    Yang Y, Wang A M 2013 Acta Phys. Sin. 62 130305 (in Chinese) [杨阳, 王安民 2013 物理学报 62 130305]

    [12]

    Xie M Q, Guo B 2013 Acta Phys. Sin. 62 130303 (in Chinese) [谢美秋, 郭斌 2013 物理学报 62 130303]

    [13]

    Seo K J, Tian L

    [14]

    Liu D Q, Chang Y C, Liu G Q, Pan X Y 2013 Acta Phys. Sin. 62 164208 (in Chinese) [刘东奇, 常彦春, 刘刚钦, 潘新宇 2013 物理学报 62 164208]

    [15]

    He L M, Ji Y, Wu H Y, Xu B, Sun Y B, Zhang X F, Lu Y, Zhao J J 2014 Chin. Phys. B 23 077601

    [16]

    Wang C, He L Y, Zhang Y 2013 Sci. China: Phys. Mech. Astron. 56 2054

    [17]

    Chen W, Xue Z Y, Wang Z D, Shen R 2014 Chin. Phys. B 23 030309

    [18]

    Yan L, Yin W, Wang F W 2014 Chin. Phys.B 23 100303

    [19]

    Li H, Yao B, Tu T 2012 Chin. Sci. Bull. 57 1919

    [20]

    Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Science 309 2180

    [21]

    Johnson A C, Petta J R, Taylor J M, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Nature 435 925

    [22]

    Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P, Vandersypen L M K 2006 Nature 442 766

    [23]

    Foletti S, Bluhm H, Mahalu D, Umansky V, Yacoby A 2009 Nat. Phys. 5 903

    [24]

    Elzerman J M, Hanson R, Willems van Beveren L H, Witkamp B, Vandersypen L M K, Kouwenhoven L P 2004 Nature 430 431

    [25]

    Barthel C, Reilly D J, Marcus C M, Hanson M P, Gossard A C 2009 Phys. Rev. Lett. 103 160503

    [26]

    Morello A, Pla J J, Zwanenburg F A, Chan K W, Tan K Y, Huebl H, Mottonen M, Nugroho C D, Yang C, van Donkelaar J A, Alves A D C, Jamieson D N, Escott C C, Hollenberg L C L, Clark R G, Dzurak A S 2010 Nature 467 687

    [27]

    Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V, Yacoby A 2011 Nat. Phys. 7 109

    [28]

    Burkard G, Loss D, DiVincenzo D P 1999 Phys. Rev. B 59 2070

    [29]

    Hu X, Das Sarma S 2000 Phys. Rev. A 61 062301

    [30]

    Kestner J P, Wang X, Bishop L S, Barnes E, Das Sarma S 2013 Phys. Rev. Lett. 110 140502

    [31]

    Wang X, Bishop L S, Kestner J P, Barnes E, Sun K, Das Sarma S 2012 Nat. Commun. 3 997

    [32]

    Li R, Hu X, You J Q 2012 Phys. Rev. B 86 205306

    [33]

    Slichter C P 1980 Principles of Magnetic Resonance (Berlin: Springer-Verlag)

    [34]

    Trif M, Golovach V N, Loss D 2008 Phys. Rev. B 77 045434

    [35]

    Hu X, Liu Y X, Nori F 2012 Phys. Rev. B 86 035314

    [36]

    Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A, Dzurak A S 2014 Nat. Nanotechnol. 9 981

    [37]

    Nowack K C, Koppens F H L, Nazarov Y V, Vandersypen L M K 2007 Science 318 1430

    [38]

    Pioro-Ladriere M, Obata T, Tokura Y, Shin Y S, Kubo T, Yoshida K, Taniyama T, Tarucha S 2008 Nat. Phys. 4 776

    [39]

    Tokura Y, van der Wiel W G, Obata T, Tarucha S 2006 Phys. Rev. Lett. 96 047202

    [40]

    Laird E, Barthel C, Rashba E, Marcus C, Hanson M, Gossard A 2007 Phys. Rev. Lett. 99 246601

    [41]

    Nadj-Perge S, Frolov S M, Bakkers E P A M, Kouwenhoven L P 2010 Nature 468 1084

    [42]

    Schroer M D, Petersson K D, Jung M, Petta J R 2011 Phys. Rev. Lett. 107 176811

    [43]

    Nadj-Perge S, Pribiag V S, van den Berg J W G, Zuo K, Plissard S R, Bakkers E P A M, Frolov S M, Kouwenhoven L P 2012 Phys. Rev. Lett. 108 166801

    [44]

    van den Berg J W G, Nadj-Perge S, Pribiag V S, Plissard S R, Bakkers E P A M, Frolov S M, Kouwenhoven L P 2013 Phys. Rev. Lett. 110 066806

    [45]

    Levitov L S, Rashba E I 2003 Phys. Rev. B 67 115324

    [46]

    Zhao N, Zhong L, Zhu J L, Sun C P 2006 Phys. Rev. B 74 075307

    [47]

    Flindt C, Sorensen A S, Flensberg K 2006 Phys. Rev. Lett. 97 240501

    [48]

    Khomitsky D V, Gulyaev L V, Sherman E Y 2012 Phys. Rev. B 85 125312

    [49]

    Ban Y, Chen X, Sherman E Y, Muga J G 2012 Phys. Rev. Lett. 109 206602

    [50]

    Rashba E I, Efros A L 2003 Phys. Rev. Lett. 91 126405

    [51]

    Golovach V N, Borhani M, Loss D 2006 Phys. Rev. B 74 165319

    [52]

    Rashba E I 2008 Phys. Rev. B 78 195302

    [53]

    Li R, You J Q, Sun C P, Nori F 2013 Phys. Rev. Lett. 111 086805

    [54]

    Brunner R, Shin Y S, Obata T, Pioro-Ladriere M, Kubo T, Yoshida K, Taniyama T, Tarucha S 2011 Phys. Rev. Lett. 107 146801

    [55]

    Szechenyi G, Palyi A 2014 Phys. Rev. B 89 115409

    [56]

    Shafiei M, Nowack K C, Reichl C, Wegscheider W, Vandersypen L M K 2013 Phys. Rev. Lett. 110 107601

    [57]

    Osika E N, Szafran B, Nowak M P 2013 Phys. Rev. B 88 165302

    [58]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

    [59]

    Landau L D, Lifshitz E M 1965 Quantum Mechanics, Course of Theoretical Physics (Vol. 3) (New York: Pergamon)

    [60]

    Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer)

    [61]

    Pershin Y V, Nesteroff J A, Privman V 2004 Phys. Rev. B 69 121306(R)

    [62]

    Nowak M P, Szafran B 2013 Phys. Rev. B 87 205436

    [63]

    Li R, You J Q 2014 Phys. Rev. B 90 035303

    [64]

    Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039

    [65]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [66]

    Bulgakov E N, Sadreev A F 2001 JETP Lett. 73 505

    [67]

    Tsitsishvili E, Lozano G S, Gogolin A O 2004 Phys. Rev. B 70 115316

    [68]

    Rashba E I 2012 Phys. Rev. B 86 125319

    [69]

    Coish W A, Loss D 2004 Phys. Rev. B 70 195340

    [70]

    Witzel W M, Das Sarma S 2006 Phys. Rev. B 74 035322

    [71]

    Yao W, Liu R B, Sham L J 2006 Phys. Rev. B 74 195301(R)

    [72]

    Deng C, Hu X 2006 Phys. Rev. B 73 241303(R)

    [73]

    Cywinski L, Witzel W M, Das Sarma S 2009 Phys. Rev. Lett. 102 057601

    [74]

    Li R 2012 Phys. Rev. A 86 032333

    [75]

    Rudner M S, Levitov L S 2007 Phys. Rev. Lett. 99 246602

    [76]

    Khaetskii A V, Nazarov Y V 2001 Phys. Rev. B 64 125316

    [77]

    Cheng J L, Wu M W, Lu C 2004 Phys. Rev. B 69 115318

    [78]

    Golovach V N, Khaetskii A, Loss D 2004 Phys. Rev. Lett. 93 016601

    [79]

    Huang P, Hu X 2014 Phys. Rev. B 89 195302

    [80]

    Jing J, Huang P, Hu X 2014 Phys. Rev. A 90 022118

  • [1] 王绍良, 李亮, 欧阳钟文, 夏正才, 夏念明, 彭涛, 张凯波. 脉冲强磁场高频电子自旋共振装置的研制. 物理学报, 2012, 61(10): 107601. doi: 10.7498/aps.61.107601
    [2] 刘湘娜, 何宇亮, 鲍希茂, 眭云霞, 徐刚毅. 掺杂纳米硅薄膜中电子自旋共振研究. 物理学报, 2001, 50(3): 512-516. doi: 10.7498/aps.50.512
    [3] 李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣. 室温下CdSe胶体量子点超快自旋动力学. 物理学报, 2012, 61(20): 207202. doi: 10.7498/aps.61.207202
    [4] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运. 物理学报, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [5] 郑军, 李春雷, 杨曦, 郭永. 四端双量子点系统中的自旋和电荷能斯特效应. 物理学报, 2017, 66(9): 097302. doi: 10.7498/aps.66.097302
    [6] 王启文, 红兰. 二维量子点中极化子的自旋弛豫. 物理学报, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
    [7] 刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢. 氧化锌锡作为电子传输层的量子点发光二极管. 物理学报, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [8] 赵瑞通, 梁瑞生, 王发强. 电子自旋辅助实现光子偏振态的量子纠缠浓缩. 物理学报, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [9] 颜晓红, 邓宇翔, 唐娜斯. 量子点环的电子输运研究. 物理学报, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [10] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [11] 万素磊, 何利民, 向俊尤, 王志国, 邢茹, 张雪峰, 鲁毅, 赵建军. 钙钛矿型锰氧化物(La0.8Eu0.2)4/3Sr5/3Mn2O7的磁性和电性研究. 物理学报, 2014, 63(23): 237501. doi: 10.7498/aps.63.237501
    [12] 孙立志, 赵谡玲, 徐征, 尹慧丽, 张成文, 龙志娟, 洪晓霞, 王鹏, 徐叙瑢. 基于量子点和MEH-PPV的白光发光二极管的研究. 物理学报, 2016, 65(6): 067301. doi: 10.7498/aps.65.067301
    [13] 白继元, 贺泽龙, 李立, 韩桂华, 张彬林, 姜平晖, 樊玉环. 两端线型双量子点分子Aharonov-Bohm干涉仪电输运. 物理学报, 2015, 64(20): 207304. doi: 10.7498/aps.64.207304
    [14] 陈丽, 孙媛媛, 王永龙, 潘洪哲, 徐明. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [15] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究. 物理学报, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [16] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [17] 吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂. 界面电子转移对量子点荧光闪烁行为的影响. 物理学报, 2014, 63(16): 167302. doi: 10.7498/aps.63.167302
    [18] 袁晓利, 施 毅, 杨红官, 卜惠明, 吴 军, 赵 波, 张 荣, 郑有钭. 硅量子点中电子的荷电动力学特征. 物理学报, 2000, 49(10): 2037-2040. doi: 10.7498/aps.49.2037
    [19] 杨翀, 姚建明. AB效应对自旋多端输运的影响. 物理学报, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [20] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响. 物理学报, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
  • 引用本文:
    Citation:
计量
  • 文章访问数:  714
  • PDF下载量:  344
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-03
  • 修回日期:  2015-05-20
  • 刊出日期:  2015-08-20

准一维半导体量子点中电偶极自旋共振的物理机理

  • 1. 北京计算科学研究中心, 量子光学与量子信息实验室, 北京 100094
    基金项目: 

    国家自然科学基金(批准号:11404020)和中国博士后科学基金(批准号: 2014M560039)资助的课题.

摘要: 半导体量子点中的电子自旋具有较长相干时间以及可扩展性的特点, 在近十几年来引起了人们的广泛兴趣. 人们常常利用电子自旋共振技术来对单个自旋进行操纵. 这样不但需要一个静磁场来使电子产生赛曼劈裂, 同时还需要一个与之垂直的局域振荡磁场. 但是, 在实验上产生足够强且具有固定频率的局域磁场是比较困难的. 后来人们发现, 局域的振荡电场也可以操纵单个电子自旋, 也就是所谓的电偶极自旋共振. 众所周知, 自旋只有自旋磁矩, 不会与电场有任何直接的相互作用. 所以, 电偶极自旋共振的发生必须依赖于某些媒质. 这些媒质包括:量子点材料中的自旋轨道耦合作用, 量子点中的局域磁场梯度, 以及量子点中电子自旋与核自旋的超精细相互作用. 这些媒质能诱导出自旋与电场之间间接的相互作用, 从而外电场操纵单个电子自旋得以实现. 本文总结归纳了目前半导体量子点系统中发生电偶极自旋共振的三种主要物理机理.

English Abstract

参考文献 (80)

目录

    /

    返回文章
    返回