搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两层星形网络的特征值谱及同步能力

徐明明 陆君安 周进

两层星形网络的特征值谱及同步能力

徐明明, 陆君安, 周进
PDF
导出引用
导出核心图
  • 多层网络是当今网络科学研究的一个前沿方向. 本文深入研究了两层星形网络的特征值谱及其同步能力的问题. 通过严格导出的两层星形网络特征值的解析表达式, 分析了网络的同步能力与节点数、层间耦合强度和层内耦合强度的关系. 当同步域无界时, 网络的同步能力只与叶子节点之间的层间耦合强度和网络的层内耦合强度有关. 当叶子节点之间的层间耦合强度比较弱时, 同步能力仅依赖于叶子节点之间的层间耦合强度; 而当层内耦合强度比较弱时, 同步能力依赖于层内耦合强度. 当同步域有界时, 节点数、层间耦合强度和层内耦合强度对网络的同步能力都有影响. 当叶子节点之间的层间耦合强度比较弱时, 增大叶子节点之间的层间耦合强度会增强网络的同步能力, 而节点数、中心节点之间的层间耦合强度和层内耦合强度的增大反而会减弱网络的同步能力; 而当层内耦合强度比较弱时, 增大层内耦合强度会增强网络的同步能力, 而节点数、层间耦合强度的增大会减弱网络的同步能力. 进一步, 在层间和层内耦合强度都相同的基础上, 讨论了如何改变耦合强度更有利于同步. 最后, 对两层BA无标度网络进行数值仿真, 得到了与两层星形网络非常类似的结论.
      通信作者: 周进, jzhou@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61374173, 11172215)资助的课题.
    [1]

    Mucha P J, Richardson T, Macon K, PorterM A, Onnela J P 2010 Science 328 876

    [2]

    D'Agostino G, Scala A 2014 Networks of Networks: The Last Frontier of Complexity (Berlin: Springer International Publishing) pp53-73

    [3]

    Kivel M, Arenas A, Barthelemy M, Gleeson J P, Moreno Y, Porter M A 2014 J. Com. Net. 2 203

    [4]

    Aguirre J, Sevilla-Escoboza R, Gutirrez R, Papo D, Buld J M 2014 Phys. Rev. Lett. 112 248701

    [5]

    Um J, Minnhagen P, Kim B J 2011 Chaos 21 5712

    [6]

    Lu R Q, Yu W W, L J H, Xue A K 2014 IEEE T. Neur. Net. Lear. 25 2110

    [7]

    Zhang X Y, Boccaletti S, Guan S G, Liu Z H 2015 Phys. Rev. Lett. 114 038701

    [8]

    Xu M M, Zhou J, Lu J A, Wu X Q 2015 Eur. Phys. J. B 88 1

    [9]

    Boccaletti S, Bianconi G, Criado R, Del Genio C I, Gmez-Gardees J, Romance M, Sendia-Nadal I, Wang Z, Zanin M 2014 Phys. Rep. 544 1

    [10]

    Gmez S, Daz-Guilera A, Gmez-Gardees J, Prez-Vicente C J, Moreno Y, Arenas A 2013 Phys. Rev. Lett. 110 028701

    [11]

    Sol-Ribalta A, De Domenico M, Kouvaris N E, Daz-Guilera A, Gmez S, Arenas A 2013 Phys. Rev. E 88 032807

    [12]

    Bauch C T, Galvani A P 2013 Science 342 47

    [13]

    Wang W, Tang M, Yang H, Do Y, Lai Y C, Lee G W 2014 Sci. Rep. 4 2154

    [14]

    Granell C, Gmez S, Arenas A 2013 Phys. Rev. Lett. 111 128701

    [15]

    Wang H J, Li Q, D'Agostino G, Havlin S, Stanley H E, Van Mieghem P 2013 Phys. Rev. E 88 022801

    [16]

    Ouyang B, Jin X Y, Xia Y X, Jiang L R, Wu T P 2014 Acta Phys. Sin. 63 218902 (in Chinese) [欧阳博, 金心宇, 夏永祥, 蒋路茸, 吴端坡 2014 物理学报 63 218902]

    [17]

    Peng X Z, Yao H, Du J, Wang Z, Ding C 2015 Acta Phys. Sin. 64 048901 (in Chinese) [彭兴钊, 姚宏, 杜军, 王哲, 丁超 2015 物理学报 64 048901]

    [18]

    Chen S M, L H, Xu Q G, Xu Y F, Lai Q 2015 Acta Phys. Sin. 64 048902 (in Chinese) [陈世明, 吕辉, 徐青刚, 许云飞, 赖强 2015 物理学报 64 048902]

    [19]

    Blekhman I I 1988 Synchronization in Science and Technology(American Society of Mechanical Engineers Press) pp1-255

    [20]

    Buck J 1988 Q. Revs. Biol. 63 265

    [21]

    Walker T J 1969 Science 166 891

    [22]

    Hansel D, Sompolinsky H 1992 Phys. Rev. Lett. 68 718

    [23]

    Peskin C S 1975 Mathematical Aspects of Heart Physiology (New York: New York University) pp1-278

    [24]

    Uhlhaas P J, Singer W 2006 Neuron 52 155

    [25]

    Liu H, Chen J, Lu J A, Cao M 2010 Phys. A 389 1759

    [26]

    Lu W L, Liu B, Chen T P 2010 Chaos 20 013120

    [27]

    Chen L, Lu J A, Tse C K 2009 IEEE Tran. Circuits Syst.-II 56 310

    [28]

    Suykens J A K, Osipov G V 2008 Chaos 18 037101

    [29]

    Arenas A, Daz-Guilera A, Kurths J, Moreno Y, Zhou C 2008 Phys. Rep. 469 93

    [30]

    Wu W, Chen T P 2008 IEEE T. Neur. Net. 19 319

    [31]

    Han X P, Lu J A, Wu X Q 2008 Int. J. Bifurcat. Chaos 18 1539

    [32]

    Zhou J, Lu J A, L J H 2008 Automatica 44 996

    [33]

    Liu Q, Fang J Q, Li Y 2007 Commun. Theor. Phys. 47 752

    [34]

    Zhou J, Lu J A, L J H 2006 IEEE T. Autmat. Contr. 51 652

    [35]

    Lu X B, Wang X F, Fang J Q 2006 Phys. A 371 841

    [36]

    Lu W L, Chen T P, Chen G R 2006 Phys. D 221 118

    [37]

    Nishikawa T, Motter A E, Lai Y C, Hoppensteadt F C 2003 Phys. Rev. Lett. 91 014201

    [38]

    Barahona M, Pecora L M 2002 Phys. Rev. Lett. 89 716

    [39]

    Kocarev L, Parlitz U 1996 Phys. Rev. Lett. 76 1816

    [40]

    The Algebra Group of Teaching and Research Section of Algebra and Gemotry, Mathematics Department, Beijing University, 2003 Advanced Algebra(Third Edition) (Beijing: Higher Education Press) pp43-82 (in Chinese) [ 北京大学数学系几何与代数教研室代数小组 2003 高等代数(第三版) (北京, 高等教育出版社)第43-82页]

    [41]

    Pecora L M, Carroll T L 1998 Phys. Rev. Lett. 80 3956

    [42]

    Pecora L M, Carroll T L, Johnson G, Mar D, Fink K S 2000 Int. J. Bifurcat. Chaos 10 273

    [43]

    Tang L K, Lu J A, L J H, Yu X H 2012 Int. J. Bifurcat. Chaos 22 1250282

  • [1]

    Mucha P J, Richardson T, Macon K, PorterM A, Onnela J P 2010 Science 328 876

    [2]

    D'Agostino G, Scala A 2014 Networks of Networks: The Last Frontier of Complexity (Berlin: Springer International Publishing) pp53-73

    [3]

    Kivel M, Arenas A, Barthelemy M, Gleeson J P, Moreno Y, Porter M A 2014 J. Com. Net. 2 203

    [4]

    Aguirre J, Sevilla-Escoboza R, Gutirrez R, Papo D, Buld J M 2014 Phys. Rev. Lett. 112 248701

    [5]

    Um J, Minnhagen P, Kim B J 2011 Chaos 21 5712

    [6]

    Lu R Q, Yu W W, L J H, Xue A K 2014 IEEE T. Neur. Net. Lear. 25 2110

    [7]

    Zhang X Y, Boccaletti S, Guan S G, Liu Z H 2015 Phys. Rev. Lett. 114 038701

    [8]

    Xu M M, Zhou J, Lu J A, Wu X Q 2015 Eur. Phys. J. B 88 1

    [9]

    Boccaletti S, Bianconi G, Criado R, Del Genio C I, Gmez-Gardees J, Romance M, Sendia-Nadal I, Wang Z, Zanin M 2014 Phys. Rep. 544 1

    [10]

    Gmez S, Daz-Guilera A, Gmez-Gardees J, Prez-Vicente C J, Moreno Y, Arenas A 2013 Phys. Rev. Lett. 110 028701

    [11]

    Sol-Ribalta A, De Domenico M, Kouvaris N E, Daz-Guilera A, Gmez S, Arenas A 2013 Phys. Rev. E 88 032807

    [12]

    Bauch C T, Galvani A P 2013 Science 342 47

    [13]

    Wang W, Tang M, Yang H, Do Y, Lai Y C, Lee G W 2014 Sci. Rep. 4 2154

    [14]

    Granell C, Gmez S, Arenas A 2013 Phys. Rev. Lett. 111 128701

    [15]

    Wang H J, Li Q, D'Agostino G, Havlin S, Stanley H E, Van Mieghem P 2013 Phys. Rev. E 88 022801

    [16]

    Ouyang B, Jin X Y, Xia Y X, Jiang L R, Wu T P 2014 Acta Phys. Sin. 63 218902 (in Chinese) [欧阳博, 金心宇, 夏永祥, 蒋路茸, 吴端坡 2014 物理学报 63 218902]

    [17]

    Peng X Z, Yao H, Du J, Wang Z, Ding C 2015 Acta Phys. Sin. 64 048901 (in Chinese) [彭兴钊, 姚宏, 杜军, 王哲, 丁超 2015 物理学报 64 048901]

    [18]

    Chen S M, L H, Xu Q G, Xu Y F, Lai Q 2015 Acta Phys. Sin. 64 048902 (in Chinese) [陈世明, 吕辉, 徐青刚, 许云飞, 赖强 2015 物理学报 64 048902]

    [19]

    Blekhman I I 1988 Synchronization in Science and Technology(American Society of Mechanical Engineers Press) pp1-255

    [20]

    Buck J 1988 Q. Revs. Biol. 63 265

    [21]

    Walker T J 1969 Science 166 891

    [22]

    Hansel D, Sompolinsky H 1992 Phys. Rev. Lett. 68 718

    [23]

    Peskin C S 1975 Mathematical Aspects of Heart Physiology (New York: New York University) pp1-278

    [24]

    Uhlhaas P J, Singer W 2006 Neuron 52 155

    [25]

    Liu H, Chen J, Lu J A, Cao M 2010 Phys. A 389 1759

    [26]

    Lu W L, Liu B, Chen T P 2010 Chaos 20 013120

    [27]

    Chen L, Lu J A, Tse C K 2009 IEEE Tran. Circuits Syst.-II 56 310

    [28]

    Suykens J A K, Osipov G V 2008 Chaos 18 037101

    [29]

    Arenas A, Daz-Guilera A, Kurths J, Moreno Y, Zhou C 2008 Phys. Rep. 469 93

    [30]

    Wu W, Chen T P 2008 IEEE T. Neur. Net. 19 319

    [31]

    Han X P, Lu J A, Wu X Q 2008 Int. J. Bifurcat. Chaos 18 1539

    [32]

    Zhou J, Lu J A, L J H 2008 Automatica 44 996

    [33]

    Liu Q, Fang J Q, Li Y 2007 Commun. Theor. Phys. 47 752

    [34]

    Zhou J, Lu J A, L J H 2006 IEEE T. Autmat. Contr. 51 652

    [35]

    Lu X B, Wang X F, Fang J Q 2006 Phys. A 371 841

    [36]

    Lu W L, Chen T P, Chen G R 2006 Phys. D 221 118

    [37]

    Nishikawa T, Motter A E, Lai Y C, Hoppensteadt F C 2003 Phys. Rev. Lett. 91 014201

    [38]

    Barahona M, Pecora L M 2002 Phys. Rev. Lett. 89 716

    [39]

    Kocarev L, Parlitz U 1996 Phys. Rev. Lett. 76 1816

    [40]

    The Algebra Group of Teaching and Research Section of Algebra and Gemotry, Mathematics Department, Beijing University, 2003 Advanced Algebra(Third Edition) (Beijing: Higher Education Press) pp43-82 (in Chinese) [ 北京大学数学系几何与代数教研室代数小组 2003 高等代数(第三版) (北京, 高等教育出版社)第43-82页]

    [41]

    Pecora L M, Carroll T L 1998 Phys. Rev. Lett. 80 3956

    [42]

    Pecora L M, Carroll T L, Johnson G, Mar D, Fink K S 2000 Int. J. Bifurcat. Chaos 10 273

    [43]

    Tang L K, Lu J A, L J H, Yu X H 2012 Int. J. Bifurcat. Chaos 22 1250282

  • [1] 孙娟, 李晓霞, 张金浩, 申玉卓, 李艳雨. 多层单向耦合星形网络的特征值谱及同步能力分析. 物理学报, 2017, 66(18): 188901. doi: 10.7498/aps.66.188901
    [2] 秦 洁, 于洪洁. 超混沌R?ssler系统构成的星形网络的混沌同步. 物理学报, 2007, 56(12): 6828-6835. doi: 10.7498/aps.56.6828
    [3] 李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠. 复杂网络时空混沌同步的Backstepping设计. 物理学报, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [4] 王利利, 乔成功, 唐国宁. 最优的Newman-Watts网络与遍历网络的同步. 物理学报, 2013, 62(24): 240510. doi: 10.7498/aps.62.240510
    [5] 张化光, 王智良, 王占山. 一类混沌神经网络的全局同步. 物理学报, 2006, 55(6): 2687-2693. doi: 10.7498/aps.55.2687
    [6] 刘曙娥, 田 亮, 施大宁, 戴存礼. 推广的失活网络动力学同步优化. 物理学报, 2008, 57(8): 4800-4804. doi: 10.7498/aps.57.4800
    [7] 吕翎, 敬晓丹. 非线性耦合完全网络的时空混沌同步. 物理学报, 2009, 58(11): 7539-7543. doi: 10.7498/aps.58.7539
    [8] 吕翎, 邹家蕊, 杨明, 孟乐, 郭丽, 柴元. 大规模富社团网络的时空混沌同步. 物理学报, 2010, 59(10): 6864-6870. doi: 10.7498/aps.59.6864
    [9] 姚洪兴, 卞秋香. 非线性耦合多重边赋权复杂网络的同步. 物理学报, 2010, 59(5): 3027-3034. doi: 10.7498/aps.59.3027
    [10] 吕翎, 李钢, 商锦玉, 沈娜, 张新, 柳爽, 朱佳博. 最近邻耦合网络的时空混沌同步研究. 物理学报, 2010, 59(9): 5966-5971. doi: 10.7498/aps.59.5966
    [11] 吕翎, 李钢, 张檬, 李雨珊, 韦琳玲, 于淼. 全局耦合网络的参量辨识与时空混沌同步. 物理学报, 2011, 60(9): 090505. doi: 10.7498/aps.60.090505
    [12] 贾冰, 古华光. 异质生物网络的同步节律的实验研究. 物理学报, 2012, 61(24): 240505. doi: 10.7498/aps.61.240505
    [13] 吕翎, 李钢, 徐文, 吕娜, 范鑫. 复Ginzburg-Landau方程时空混沌的网络同步与参量辨识. 物理学报, 2012, 61(6): 060507. doi: 10.7498/aps.61.060507
    [14] 戴存礼, 吴威, 赵艳艳, 姚雪霞, 赵志刚. 权重分布对加权局域世界网络动力学同步的影响. 物理学报, 2013, 62(10): 108903. doi: 10.7498/aps.62.108903
    [15] 廖志贤, 罗晓曙. 基于小世界网络模型的光伏微网系统同步方法研究. 物理学报, 2014, 63(23): 230502. doi: 10.7498/aps.63.230502
    [16] 舒睿, 陈伟, 肖井华. 多个耦合星型网络的同步优化. 物理学报, 2019, 68(18): 180503. doi: 10.7498/aps.68.20190308
    [17] 吴然超. 时滞离散神经网络的同步控制. 物理学报, 2009, 58(1): 139-142. doi: 10.7498/aps.58.139
    [18] 戴存礼, 赵艳艳, 吴威, 曾伦武. 移动Ad Hoc网络动力学同步能力的研究. 物理学报, 2010, 59(11): 7719-7723. doi: 10.7498/aps.59.7719
    [19] 吴望生, 唐国宁. 不同耦合下混沌神经元网络的同步. 物理学报, 2012, 61(7): 070505. doi: 10.7498/aps.61.070505
    [20] 关新平, 唐英干, 范正平, 王益群. 基于神经网络的混沌系统鲁棒自适应同步. 物理学报, 2001, 50(11): 2112-2115. doi: 10.7498/aps.50.2112
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1416
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-07
  • 修回日期:  2015-10-17
  • 刊出日期:  2016-01-20

两层星形网络的特征值谱及同步能力

  • 1. 武汉大学数学与统计学院, 武汉 430072
  • 通信作者: 周进, jzhou@whu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61374173, 11172215)资助的课题.

摘要: 多层网络是当今网络科学研究的一个前沿方向. 本文深入研究了两层星形网络的特征值谱及其同步能力的问题. 通过严格导出的两层星形网络特征值的解析表达式, 分析了网络的同步能力与节点数、层间耦合强度和层内耦合强度的关系. 当同步域无界时, 网络的同步能力只与叶子节点之间的层间耦合强度和网络的层内耦合强度有关. 当叶子节点之间的层间耦合强度比较弱时, 同步能力仅依赖于叶子节点之间的层间耦合强度; 而当层内耦合强度比较弱时, 同步能力依赖于层内耦合强度. 当同步域有界时, 节点数、层间耦合强度和层内耦合强度对网络的同步能力都有影响. 当叶子节点之间的层间耦合强度比较弱时, 增大叶子节点之间的层间耦合强度会增强网络的同步能力, 而节点数、中心节点之间的层间耦合强度和层内耦合强度的增大反而会减弱网络的同步能力; 而当层内耦合强度比较弱时, 增大层内耦合强度会增强网络的同步能力, 而节点数、层间耦合强度的增大会减弱网络的同步能力. 进一步, 在层间和层内耦合强度都相同的基础上, 讨论了如何改变耦合强度更有利于同步. 最后, 对两层BA无标度网络进行数值仿真, 得到了与两层星形网络非常类似的结论.

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回