搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于残差矩阵估计的稀疏表示目标跟踪算法

陈典兵 朱明 高文 王慧利 杨航

基于残差矩阵估计的稀疏表示目标跟踪算法

陈典兵, 朱明, 高文, 王慧利, 杨航
PDF
导出引用
导出核心图
  • 基于稀疏表示的目标跟踪算法多数利用稀疏系数计算目标位置信息,而忽略了稀疏表示过程中的残差所包含的信息.因此,本文设计了一种基于残差矩阵估计的跟踪模型.该模型在粒子滤波的框架下利用L1范数分别约束稀疏表示系数与残差矩阵,并且利用L2范数建立残差矩阵与观测模型之间的联系.本文给出了相应求解模型的表示系数与残差矩阵的迭代算法,并利用残差矩阵更新模板字典.相比应用稀疏系数的跟踪算法,本文算法考虑了残差矩阵对跟踪结果的影响,使得算法对于候选目标的评估更加精确,同时在模板更新部分引入残差矩阵,使得字典能够更好地描述目标的变化.实验数据表明,本文算法优于现今主流算法.
      通信作者: 朱明, zhu_mingca@163.com
    • 基金项目: 国家自然科学基金(批准号:61401425)和吉林省科技发展计划青年科研基金(批准号:20150520057JH)资助的课题.
    [1]

    Gao W, Tang Y, Zhu M 2015 Acta Phys. Sin. 64 014205 (in Chinese) [高文, 汤洋, 朱明2015物理学报64 014205]

    [2]

    Xu Y, Zhang B, Zhong Z F 2015 Pattern Recogn. Lett. 68 9

    [3]

    Fan Q, Qi C 2016 Neurocomputing 175 81

    [4]

    Kim M, Han D K, Ko H 2016 Information Fusion 27 198

    [5]

    Mei X, Ling H B 2009 Proceedings of IEEE International Conference on Computer Vision Kyoto, Japan, September 27-October 4, 2009 p1436

    [6]

    Liu B Y, Huang J Z, Yang L, Kulikowsk C 2011 Proceedings of IEEE Computer Vision, Pattern Recognition Colorado, Springs, June 21-252011 p1313

    [7]

    Jia X, Lu H C, Yang M H 2012 Proceedings of IEEE Computer Vision, Pattern Recognition Providence, Rhode Island, June 16-21, 2012 p1822

    [8]

    Liu H P, Sun F C 2010 Proceedings of International Conference on Pattern Recognition Istanbul, Turkey, August 23-26, 2010 p1702

    [9]

    Wang B X, Zhao B J, Tang L B, Wang S G, Wu J H 2014 Acta Phys. Sin. 63 234201 (in Chinese) [王保宪, 赵保军, 唐林波, 王水根, 吴京辉2014物理学报63 234201]

    [10]

    Liu B Y, Yang L, Huang J Z, Meer P, Gong L G, Kulikowski C 2010 Proceedings of the 11th European Conference on Computer Vision Crete, Greece, September 5-11, 2010 p624

    [11]

    Wang Q, Chen F, Xu W L, Yang M H 2012 Proceedings of I EE E Workshop on Applications of Computer Vision Breckenridge, C O, January 9-11, 2012 p425

    [12]

    Bao C L, Wu Y, Ling H B, Ji H 2012 Proceedings of IEEE Computer Vision, Pattern Recognition Providence, Rhode Island, June 16-21, 2012 p1830

    [13]

    Pérez P, Hue C, Vermaak J, Gangnet M 2002 European Conference on Computer Vision Copenhagen, Denmark, May 28-31, 2002 p661

    [14]

    Zhang T Z, Ghanem B, Liu S, Ahuja N 2013 Int. J. Comput. Vision 101 367

    [15]

    Zhuang B H, Lu H C, Xiao Z Y, Wang D 2014 IEEE Trans. Image Proces. 23 1872

    [16]

    Zhong W, Lu H C, Yang M H 2012 Proceedings of IEEE Computer Vision, Pattern Recognition Providence, Rhode Island, June 16-21, 2012 p1838

    [17]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [18]

    Donoho D L, T SA IG Y 2006 Signal Proces. 86 533

    [19]

    Rao S R, Tron R, Vidal R, Ma Y 2009 IEEE Trans. PAMI. 32 1832

    [20]

    Wang D, Lu H C 2012 IEEE Signal Proces. Lett. 19 711

    [21]

    Yan H, Yang J 2016 Neurocomputing 173 1936

    [22]

    Efron B, Hastie T, Johnstone I, Tibshirani R 2004 Ann. Statist. 32 407

    [23]

    Hale E T, Yin W, Zhang Y 2008 SIAM J. Opt. 19 1107

    [24]

    Wu Y, Lim J, Yang M H 2013 Proceedings of IEEE Computer Vision, Pattern Recognition Portland, Oregon, June 23-28, 2013 p2411

    [25]

    Ross D, Lim J, Lin R, Yang M H 2008 Int. J. Comput. Vision 77 125

    [26]

    Kalal Z, Mikolajczyk K, Matas J 2012 IEEE Trans. on PAMI 34 1409

    [27]

    Everingham M, Gool L V, Williams C K I, Winn J M, Zisserman A 2010 Int. J. Comput. Vision 88 303

  • [1]

    Gao W, Tang Y, Zhu M 2015 Acta Phys. Sin. 64 014205 (in Chinese) [高文, 汤洋, 朱明2015物理学报64 014205]

    [2]

    Xu Y, Zhang B, Zhong Z F 2015 Pattern Recogn. Lett. 68 9

    [3]

    Fan Q, Qi C 2016 Neurocomputing 175 81

    [4]

    Kim M, Han D K, Ko H 2016 Information Fusion 27 198

    [5]

    Mei X, Ling H B 2009 Proceedings of IEEE International Conference on Computer Vision Kyoto, Japan, September 27-October 4, 2009 p1436

    [6]

    Liu B Y, Huang J Z, Yang L, Kulikowsk C 2011 Proceedings of IEEE Computer Vision, Pattern Recognition Colorado, Springs, June 21-252011 p1313

    [7]

    Jia X, Lu H C, Yang M H 2012 Proceedings of IEEE Computer Vision, Pattern Recognition Providence, Rhode Island, June 16-21, 2012 p1822

    [8]

    Liu H P, Sun F C 2010 Proceedings of International Conference on Pattern Recognition Istanbul, Turkey, August 23-26, 2010 p1702

    [9]

    Wang B X, Zhao B J, Tang L B, Wang S G, Wu J H 2014 Acta Phys. Sin. 63 234201 (in Chinese) [王保宪, 赵保军, 唐林波, 王水根, 吴京辉2014物理学报63 234201]

    [10]

    Liu B Y, Yang L, Huang J Z, Meer P, Gong L G, Kulikowski C 2010 Proceedings of the 11th European Conference on Computer Vision Crete, Greece, September 5-11, 2010 p624

    [11]

    Wang Q, Chen F, Xu W L, Yang M H 2012 Proceedings of I EE E Workshop on Applications of Computer Vision Breckenridge, C O, January 9-11, 2012 p425

    [12]

    Bao C L, Wu Y, Ling H B, Ji H 2012 Proceedings of IEEE Computer Vision, Pattern Recognition Providence, Rhode Island, June 16-21, 2012 p1830

    [13]

    Pérez P, Hue C, Vermaak J, Gangnet M 2002 European Conference on Computer Vision Copenhagen, Denmark, May 28-31, 2002 p661

    [14]

    Zhang T Z, Ghanem B, Liu S, Ahuja N 2013 Int. J. Comput. Vision 101 367

    [15]

    Zhuang B H, Lu H C, Xiao Z Y, Wang D 2014 IEEE Trans. Image Proces. 23 1872

    [16]

    Zhong W, Lu H C, Yang M H 2012 Proceedings of IEEE Computer Vision, Pattern Recognition Providence, Rhode Island, June 16-21, 2012 p1838

    [17]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [18]

    Donoho D L, T SA IG Y 2006 Signal Proces. 86 533

    [19]

    Rao S R, Tron R, Vidal R, Ma Y 2009 IEEE Trans. PAMI. 32 1832

    [20]

    Wang D, Lu H C 2012 IEEE Signal Proces. Lett. 19 711

    [21]

    Yan H, Yang J 2016 Neurocomputing 173 1936

    [22]

    Efron B, Hastie T, Johnstone I, Tibshirani R 2004 Ann. Statist. 32 407

    [23]

    Hale E T, Yin W, Zhang Y 2008 SIAM J. Opt. 19 1107

    [24]

    Wu Y, Lim J, Yang M H 2013 Proceedings of IEEE Computer Vision, Pattern Recognition Portland, Oregon, June 23-28, 2013 p2411

    [25]

    Ross D, Lim J, Lin R, Yang M H 2008 Int. J. Comput. Vision 77 125

    [26]

    Kalal Z, Mikolajczyk K, Matas J 2012 IEEE Trans. on PAMI 34 1409

    [27]

    Everingham M, Gool L V, Williams C K I, Winn J M, Zisserman A 2010 Int. J. Comput. Vision 88 303

  • [1] 王保宪, 赵保军, 唐林波, 王水根, 吴京辉. 基于双向稀疏表示的鲁棒目标跟踪算法. 物理学报, 2014, 63(23): 234201. doi: 10.7498/aps.63.234201
    [2] 逯志宇, 王大鸣, 王建辉, 王跃. 基于时频差的正交容积卡尔曼滤波跟踪算法. 物理学报, 2015, 64(15): 150502. doi: 10.7498/aps.64.150502
    [3] 高文, 汤洋, 朱明. 目标跟踪中目标模型更新问题的半监督学习算法研究. 物理学报, 2015, 64(1): 014205. doi: 10.7498/aps.64.014205
    [4] 张文杰, 王世元, 冯亚丽, 冯久超. 基于Huber的高阶容积卡尔曼跟踪算法. 物理学报, 2016, 65(8): 088401. doi: 10.7498/aps.65.088401
    [5] 高文, 汤洋, 朱明. 复杂背景下目标检测的级联分类器算法研究. 物理学报, 2014, 63(9): 094204. doi: 10.7498/aps.63.094204
    [6] 盛峥, 黄思训. 变分伴随正则化方法从雷达回波反演海洋波导(Ⅰ):理论推导部分. 物理学报, 2010, 59(3): 1734-1739. doi: 10.7498/aps.59.1734
    [7] 盛峥, 黄思训. 变分伴随正则化方法从雷达回波反演海洋波导(Ⅱ):实际反演试验. 物理学报, 2010, 59(6): 3912-3916. doi: 10.7498/aps.59.3912
    [8] 姜祝辉, 黄思训, 何然, 周晨腾. 合成孔径雷达资料反演海面风场的正则化方法研究. 物理学报, 2011, 60(6): 068401. doi: 10.7498/aps.60.068401
    [9] 仲跻芹, 赵延来, 黄思训, 杜华栋. 正则化方法同化多普勒天气雷达资料及对降雨预报的影响. 物理学报, 2011, 60(7): 079202. doi: 10.7498/aps.60.079202
    [10] 何然, 黄思训, 周晨腾, 姜祝辉. 遗传算法结合正则化方法反演海洋大气波导 . 物理学报, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [11] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [12] 段晓亮, 王一博, 杨慧珠. 基于逆散射理论的地震波速度正则化反演. 物理学报, 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [13] 刘广东, 张业荣. 二维有耗色散介质的时域逆散射方法. 物理学报, 2010, 59(10): 6969-6979. doi: 10.7498/aps.59.6969
    [14] 赵小峰, 黄思训. 垂直天线阵观测信息反演大气折射率廓线. 物理学报, 2011, 60(11): 119203. doi: 10.7498/aps.60.119203
    [15] 龙智勇, 石汉青, 黄思训. 利用卫星云图反演云导风的新思路. 物理学报, 2011, 60(5): 059202. doi: 10.7498/aps.60.059202
    [16] 赵延来, 黄思训, 杜华栋. 基于变分方法的有限区域风场分解与重构I: 理论框架和仿真实验. 物理学报, 2013, 62(3): 039204. doi: 10.7498/aps.62.039204
    [17] 王新迎, 韩敏, 王亚楠. 含噪混沌时间序列预测误差分析. 物理学报, 2013, 62(5): 050504. doi: 10.7498/aps.62.050504
    [18] 刘广东, 张开银. 二维电磁逆散射问题的时域高斯-牛顿反演算法. 物理学报, 2014, 63(3): 034102. doi: 10.7498/aps.63.034102
    [19] 苏勇, 范东明, 游为. 利用GOCE卫星数据确定全球重力场模型. 物理学报, 2014, 63(9): 099101. doi: 10.7498/aps.63.099101
    [20] 刘杰, 张建勋, 代煜. 基于多引导滤波的图像增强算法. 物理学报, 2018, 67(23): 238701. doi: 10.7498/aps.67.20181425
  • 引用本文:
    Citation:
计量
  • 文章访问数:  667
  • PDF下载量:  427
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-05
  • 修回日期:  2016-07-14
  • 刊出日期:  2016-10-05

基于残差矩阵估计的稀疏表示目标跟踪算法

  • 1. 中国科学院长春光学精密机械与物理研究所, 长春 130033;
  • 2. 中国科学院大学, 北京 100039
  • 通信作者: 朱明, zhu_mingca@163.com
    基金项目: 

    国家自然科学基金(批准号:61401425)和吉林省科技发展计划青年科研基金(批准号:20150520057JH)资助的课题.

摘要: 基于稀疏表示的目标跟踪算法多数利用稀疏系数计算目标位置信息,而忽略了稀疏表示过程中的残差所包含的信息.因此,本文设计了一种基于残差矩阵估计的跟踪模型.该模型在粒子滤波的框架下利用L1范数分别约束稀疏表示系数与残差矩阵,并且利用L2范数建立残差矩阵与观测模型之间的联系.本文给出了相应求解模型的表示系数与残差矩阵的迭代算法,并利用残差矩阵更新模板字典.相比应用稀疏系数的跟踪算法,本文算法考虑了残差矩阵对跟踪结果的影响,使得算法对于候选目标的评估更加精确,同时在模板更新部分引入残差矩阵,使得字典能够更好地描述目标的变化.实验数据表明,本文算法优于现今主流算法.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回