搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铷原子气体自旋噪声谱测量的信噪比分析

史平 马健 钱轩 姬扬 李伟

铷原子气体自旋噪声谱测量的信噪比分析

史平, 马健, 钱轩, 姬扬, 李伟
PDF
导出引用
导出核心图
  • 自旋噪声谱是一种非扰动的自旋动力学研究方法,通过探测系统在非激发条件下的自旋涨落,可以揭示系统在热平衡状态下的性质.因为系统在稳态下的自旋涨落十分微弱,所以提高信噪比在自旋噪声谱的测量中特别重要.本文采用频谱仪、数据采集卡和实时傅里叶变换采集卡三种方法来测量铷原子气体的自旋噪声谱,并将实验结果进行对比,分析了叠加次数、测量效率和采样深度等因素对谱线信噪比的影响.实验发现,谱线叠加次数对自旋噪声谱的信噪比影响最为显著,测量效率则能反映不同方法在相同的测量时间内得到的谱线质量,并比较了三种方法的测量效率,采样深度的提高并不能明显改善自旋噪声谱的信噪比.相比于传统的频谱仪和数据采集卡,实时傅里叶变换采集卡的数据利用率和测量效率更高,从而具有更好的信噪比,非常有利于自旋噪声谱在自旋动力学研究中的应用.
      通信作者: 姬扬, jiyang@semi.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB922304)和国家自然科学基金(批准号:91321310,11404325)资助的课题.
    [1]

    Forrester A T, Gudmundsen R A, Johnson P O 1955 Phys. Rev. 99 1691

    [2]

    Crooker S A, Rickel D G, Balatsky A V, Smith D L 2004 Nature 431 49

    [3]

    Horn H, Mller G M, Rasel E M, Santos L, Hbner J, Oestreich M 2011 Phys. Rev. A 84 043851

    [4]

    Zapasskii V S, Greilich A, Crooker S A, Li Y, Kozlov G G, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2013 Phys. Rev. Lett. 110 176601

    [5]

    Oestreich M, Römer M, Haug R J, Högele D 2005 Phys. Rev. Lett. 95 216603

    [6]

    Mller G M, Römer M, Schuh D, Wegscheider W, Hbner J, Oestreich M 2008 Phys. Rev. Lett. 101 206601

    [7]

    Li Y, Sinitsyn N, Smith D L, Reuter D, Wieck A D, Yakovlev D R, Bayer M, Crooker S A 2012 Phys. Rev. Lett. 108 186603

    [8]

    Dyakonov M(translated by Ji Y) 1987 Spin Physics in Semicondoctors(Beijing:Science Press) pp117-119(in Chinese)[M. I. 迪阿科诺夫主编(姬扬译) 2010半导体中的自旋物理学(北京:科学出版社)第117–119页]

    [9]

    Zapasskii V S, Przhibelskii S G 2011 Opt. Spectrosc. 110 917

    [10]

    Crooker S A, Brandt J, Sandfort C, Greilich A, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2010 Phys. Rev. Lett. 104 036601

    [11]

    Mller G M, Römer M, Hbner J, Oestreich M 2010 Appl. Phys. Lett. 97 192109

    [12]

    Aleksandrov E B, Zapasskii V S 2012 J. Phys.:Conference Series 397 012030

    [13]

    Mller G M, Oestreich M, Römer M, Hbner J 2010 Physica E 43 569

    [14]

    Arimondo E, Inguscio M, Violino P 1977 Rev. Mod. Phys. 49 31

    [15]

    Bize S, Sortais Y, Santos M S, Mandache C, Clairon A, Salomon C 1999 Europhys. Lett. 45 558

    [16]

    Treffers R R 1948 Bell Syst. Tech. 27 446

    [17]

    Demtröder W(translated by Ji Y) 2008 Laser Spectroscopy. Vol. 1:Basic Principles(Beijing:Science Press) pp162-163(in Chinese)[戴姆特瑞德著(姬扬译) 2012激光光谱学:原书第四版第1卷基础理论(北京:科学出版社)第162–163页]

    [18]

    Ott H W(translated by Zou P et al.) 2009 Electromagnetic Compatibility Engineering(Beijing:Tsinghua University Press) pp195(in Chinese)[奥特著(邹鹏等译) 2013电磁兼容工程(北京:清华大学出版社)第195页]

  • [1]

    Forrester A T, Gudmundsen R A, Johnson P O 1955 Phys. Rev. 99 1691

    [2]

    Crooker S A, Rickel D G, Balatsky A V, Smith D L 2004 Nature 431 49

    [3]

    Horn H, Mller G M, Rasel E M, Santos L, Hbner J, Oestreich M 2011 Phys. Rev. A 84 043851

    [4]

    Zapasskii V S, Greilich A, Crooker S A, Li Y, Kozlov G G, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2013 Phys. Rev. Lett. 110 176601

    [5]

    Oestreich M, Römer M, Haug R J, Högele D 2005 Phys. Rev. Lett. 95 216603

    [6]

    Mller G M, Römer M, Schuh D, Wegscheider W, Hbner J, Oestreich M 2008 Phys. Rev. Lett. 101 206601

    [7]

    Li Y, Sinitsyn N, Smith D L, Reuter D, Wieck A D, Yakovlev D R, Bayer M, Crooker S A 2012 Phys. Rev. Lett. 108 186603

    [8]

    Dyakonov M(translated by Ji Y) 1987 Spin Physics in Semicondoctors(Beijing:Science Press) pp117-119(in Chinese)[M. I. 迪阿科诺夫主编(姬扬译) 2010半导体中的自旋物理学(北京:科学出版社)第117–119页]

    [9]

    Zapasskii V S, Przhibelskii S G 2011 Opt. Spectrosc. 110 917

    [10]

    Crooker S A, Brandt J, Sandfort C, Greilich A, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2010 Phys. Rev. Lett. 104 036601

    [11]

    Mller G M, Römer M, Hbner J, Oestreich M 2010 Appl. Phys. Lett. 97 192109

    [12]

    Aleksandrov E B, Zapasskii V S 2012 J. Phys.:Conference Series 397 012030

    [13]

    Mller G M, Oestreich M, Römer M, Hbner J 2010 Physica E 43 569

    [14]

    Arimondo E, Inguscio M, Violino P 1977 Rev. Mod. Phys. 49 31

    [15]

    Bize S, Sortais Y, Santos M S, Mandache C, Clairon A, Salomon C 1999 Europhys. Lett. 45 558

    [16]

    Treffers R R 1948 Bell Syst. Tech. 27 446

    [17]

    Demtröder W(translated by Ji Y) 2008 Laser Spectroscopy. Vol. 1:Basic Principles(Beijing:Science Press) pp162-163(in Chinese)[戴姆特瑞德著(姬扬译) 2012激光光谱学:原书第四版第1卷基础理论(北京:科学出版社)第162–163页]

    [18]

    Ott H W(translated by Zou P et al.) 2009 Electromagnetic Compatibility Engineering(Beijing:Tsinghua University Press) pp195(in Chinese)[奥特著(邹鹏等译) 2013电磁兼容工程(北京:清华大学出版社)第195页]

  • [1] 尚雅轩, 马健, 史平, 钱轩, 李伟, 姬扬. 铷原子气体自旋噪声谱的测量与改进. 物理学报, 2018, 67(8): 087201. doi: 10.7498/aps.67.20180098
    [2] 郭志超, 张桐耀, 张靖. 微米气室铯原子自旋噪声谱. 物理学报, 2020, 69(3): 037201. doi: 10.7498/aps.69.20191623
    [3] 曹明涛, 邱淑伟, 郭文阁, 刘韬, 韩亮, 刘昊, 张沛, 张首刚, 高宏, 李福利. 铷原子蒸汽中的光偏振旋转效应. 物理学报, 2012, 61(16): 164208. doi: 10.7498/aps.61.164208
    [4] 严卫, 陆文, 施健康, 任建奇, 王蕊. 法拉第旋转对空间被动微波遥感的影响及消除. 物理学报, 2011, 60(9): 099401. doi: 10.7498/aps.60.099401
    [5] 董大兴, 刘友文, 伏洋洋, 费越. 金属光栅异常透射增强黑磷烯法拉第旋转的理论研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201056
    [6] 陈晓东, 肖邵军, 林秀敏, 顾永建. 基于法拉第旋转构造光子Bell态分析器和GHZ态分析器. 物理学报, 2010, 59(8): 5251-5255. doi: 10.7498/aps.59.5251
    [7] 靳艳飞, 徐 伟, 李 伟, 徐 猛. 具有周期信号调制噪声的线性模型的随机共振. 物理学报, 2005, 54(6): 2562-2567. doi: 10.7498/aps.54.2562
    [8] 周丙常, 徐 伟. 关联噪声驱动的非对称双稳系统的随机共振. 物理学报, 2008, 57(4): 2035-2040. doi: 10.7498/aps.57.2035
    [9] 汪志云, 陈培杰, 张良英. 色关联噪声驱动下双模激光随机共振. 物理学报, 2014, 63(19): 194204. doi: 10.7498/aps.63.194204
    [10] 杨宝俊, 李 月, 石要武. 色噪声背景下微弱正弦信号的混沌检测. 物理学报, 2003, 52(3): 526-530. doi: 10.7498/aps.52.526
    [11] 曾冰, 曾曙光, 张彬, 孙年春, 隋展. 提升啁啾脉冲激光信噪比的扫描滤波方法. 物理学报, 2012, 61(15): 154209. doi: 10.7498/aps.61.154209
    [12] 徐 伟, 李 伟, 靳艳飞, 徐 猛. 偏置信号调制下色关联噪声驱动的线性系统的随机共振. 物理学报, 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
    [13] 董小娟. 含关联噪声与时滞项的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5618-5622. doi: 10.7498/aps.56.5618
    [14] 周丙常, 徐 伟. 周期混合信号和噪声联合激励下的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [15] 陈德彝, 王忠龙. 噪声间关联程度的时间周期调制对单模激光随机共振的影响. 物理学报, 2008, 57(6): 3333-3336. doi: 10.7498/aps.57.3333
    [16] 宁丽娟, 徐伟. 信号调制下分段噪声驱动的线性系统的随机共振. 物理学报, 2009, 58(5): 2889-2894. doi: 10.7498/aps.58.2889
    [17] 张淳民, 黃伟健, 赵葆常. 新型偏振干涉成像光谱仪噪声分析与评价. 物理学报, 2010, 59(8): 5479-5486. doi: 10.7498/aps.59.5479
    [18] 张晓燕, 徐伟, 周丙常. 色高斯噪声驱动双稳系统的多重随机共振研究. 物理学报, 2011, 60(6): 060514. doi: 10.7498/aps.60.060514
    [19] 田艳, 黄丽, 罗懋康. 噪声交叉关联强度的时间周期调制对线性过阻尼系统的随机共振的影响. 物理学报, 2013, 62(5): 050502. doi: 10.7498/aps.62.050502
    [20] 刘明, 张树林, 李华, 邱阳, 曾佳, 张国峰, 王永良, 孔祥燕, 谢晓明. 一种应用于心磁噪声抑制的选择性平均方法研究. 物理学报, 2013, 62(9): 098501. doi: 10.7498/aps.62.098501
  • 引用本文:
    Citation:
计量
  • 文章访问数:  831
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-19
  • 修回日期:  2016-10-11
  • 刊出日期:  2017-01-05

铷原子气体自旋噪声谱测量的信噪比分析

  • 1. 中国科学院半导体研究所, 超晶格国家重点实验室, 北京 100083;
  • 2. 挪威科技大学, 海事技术与操作系, 奥勒松 6025
  • 通信作者: 姬扬, jiyang@semi.ac.cn
    基金项目: 

    国家重点基础研究发展计划(批准号:2013CB922304)和国家自然科学基金(批准号:91321310,11404325)资助的课题.

摘要: 自旋噪声谱是一种非扰动的自旋动力学研究方法,通过探测系统在非激发条件下的自旋涨落,可以揭示系统在热平衡状态下的性质.因为系统在稳态下的自旋涨落十分微弱,所以提高信噪比在自旋噪声谱的测量中特别重要.本文采用频谱仪、数据采集卡和实时傅里叶变换采集卡三种方法来测量铷原子气体的自旋噪声谱,并将实验结果进行对比,分析了叠加次数、测量效率和采样深度等因素对谱线信噪比的影响.实验发现,谱线叠加次数对自旋噪声谱的信噪比影响最为显著,测量效率则能反映不同方法在相同的测量时间内得到的谱线质量,并比较了三种方法的测量效率,采样深度的提高并不能明显改善自旋噪声谱的信噪比.相比于传统的频谱仪和数据采集卡,实时傅里叶变换采集卡的数据利用率和测量效率更高,从而具有更好的信噪比,非常有利于自旋噪声谱在自旋动力学研究中的应用.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回