搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于热声相控阵列的声聚焦效应

刘宸 孙宏祥 袁寿其 夏建平 钱姣

引用本文:
Citation:

基于热声相控阵列的声聚焦效应

刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣

Acoustic focusing by thermoacoustic phased array

Liu Chen, Sun Hong-Xiang, Yuan Shou-Qi, Xia Jian-Ping, Qian Jiao
PDF
导出引用
  • 研究基于热声相控阵列的宽频带声聚焦效应.设计新型热声相位控制单元,通过改变单元的空气温度控制声波波速,实现声波透射与反射相位延迟覆盖2区间.设计四种不同类型的热声相控阵列聚焦透镜,采用8种或2种热声相位控制单元分别实现了透射与反射声聚焦效应.与其他类型的声聚焦透镜相比,热声相控阵列聚焦透镜具有宽频带、高聚焦性能、设计方案简单等优点.
    Broadband acoustic focusing effect based on a thermoacoustic phased array is studied. In this work, according to the relationship between the sound velocity and the temperature, a new type of a thermoacoustic phase control unit is designed by using air with different temperatures surrounded by rigid insulated boundaries and thermal insulation films. The acoustic wave velocity could be adjusted by changing the temperature of air in the unit, and the transmitted and reflected acoustic phase delays can cover the whole 2 interval. On the basis of this thermoacoustic phased array, we design four different types of acoustic focusing lenses. By using eight or two kinds of such units, we realize the transmitted and reflected acoustic focusing effect, respectively. The results show that the thermoacoustic phased array lens has a good focusing performance in a frequency range of 4.0-15.0 kHz. In addition, the center intensity of the focal spot is much greater in the focusing lens with eight phase units, and the design method is simpler and more robust in the focusing lens with two phase units. Compared with other types of focusing lenses, the proposed focusing lens based on the thermoacoustic phased array has the advantages of broad bandwidth, high focusing performance and simple designed method. The results provide a theoretical basis and experimental reference for designing the broadband thermoacoustic phased array devices and new types of acoustic focusing lenses.
      通信作者: 孙宏祥, jsdxshx@ujs.edu.cn;Shouqiy@ujs.edu.cn ; 袁寿其, jsdxshx@ujs.edu.cn;Shouqiy@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11404147)、国家自然科学基金重大项目(批准号:51239005)、江苏省自然科学基金(批准号:BK20140519)和江苏高校青蓝工程资助的课题.
      Corresponding author: Sun Hong-Xiang, jsdxshx@ujs.edu.cn;Shouqiy@ujs.edu.cn ; Yuan Shou-Qi, jsdxshx@ujs.edu.cn;Shouqiy@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11404147),the Major Program of the National Natural Science Foundation of China (Grant No.51239005),the Natural Science Foundation of Jiangsu Province of China (Grant No.BK20140519),and the Jiangsu Qing Lan Project,China.
    [1]

    Zhao J J, Ye H P, Huang K, Chen Z N, Li B W, Qiu C W 2014 Sci. Rep. 4 6257

    [2]

    Gu Y, Cheng Y, Liu X J 2015 Appl. Phys. Lett. 107 133503

    [3]

    Xia J P, Sun H X 2015 Appl. Phys. Lett. 106 063505

    [4]

    Zheng L, Guo J Z 2016 Acta Phys. Sin. 65 044305 (in Chinese) [郑莉, 郭建中 2016 物理学报 65 044305]

    [5]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Phys. D: Appl. Phys. 42 185505

    [6]

    Lin S C S, Huang T J, Sun J H, Wu T T 2009 Phys. Rev. B 79 094302

    [7]

    Martin T P, Layman C N, Moore K M, Orris G J 2012 Phys. Rev. B 85 161103

    [8]

    Torrent D, Snchez-Dehesa J 2007 New J. Phys. 9 323

    [9]

    Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z, Liu Z Y 2010 Appl. Phys. Lett. 96 263502

    [10]

    Zhang S, Yin L L, Fang N 2009 Phys. Rev. Lett. 102 194301

    [11]

    Zigoneanu L, Popa B I, Cummer S A 2011 Phys. Rev. B 84 024305

    [12]

    Li Y, Liang B, Tao X, Zhu X F, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 233508

    [13]

    Wang W Q, Xie Y B, Konneker A, Popa B I, Cummer S A 2014 Appl. Phys. Lett. 105 101904

    [14]

    Yuan B G, Cheng Y, Liu X J 2015 Appl. Phys. Express 8 027301

    [15]

    Lu G X, Ding E L, Wang Y Y, Ping X Y, Cui J, Liu X Z, Liu X J 2017 Appl. Phys. Lett. 110 123507

    [16]

    Mei J, Wu Y 2014 New J. Phys. 16 123007

    [17]

    Jahdali R A, Wu Y 2016 Appl. Phys. Lett. 108 031902

    [18]

    Xia J P, Sun H X, Cheng Q, Xu Z, Chen H, Yuan S Q, Zhang S Y, Ge Y, Guan Y J 2016 Appl. Phys. Express 9 057301

    [19]

    Guan Y J, Sun H X, Liu S S, Yuan S Q, Xia J P, Ge Y 2016 Chin. Phys. B 25 104302

    [20]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546

    [21]

    Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, Liang B, Cheng J C 2015 Sci. Rep. 5 10966

    [22]

    Tang K, Qiu C Y, Ke M Z, Lu J Y, Ye Y T, Liu Z Y 2014 Sci. Rep. 4 6517

    [23]

    Wang X P, Wan L L, Chen T N, Song A L, Wang F 2016 J. Appl. Phys. 120 014902

    [24]

    Gao H, Gu Z M, Liang B, Zou X Y, Yang J, Yang J, Cheng J C 2016 Appl. Phys. Lett. 108 073501

    [25]

    Tian Y, Wei Q, Cheng Y, Xu Z, Liu X J 2015 Appl. Phys. Lett. 107 221906

    [26]

    Fan X D, Zhu Y F, Liang B, Yang J, Cheng J C 2016 Appl. Phys. Lett. 109 243501

    [27]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [28]

    Dehesa J S, Angelov M I, Cervera F, Cai L W 2009 Appl. Phys. Lett. 95 204102

    [29]

    Ge Y, Sun H X, Liu C, Qian J, Yuan S Q, Xia J P, Guan Y J, Zhang S Y 2016 Appl. Phys. Express 9 066701

    [30]

    Liu C, Sun H X, Yuan S Q, Xia J P 2016 Acta Phys. Sin. 65 044303 (in Chinese) [刘宸, 孙宏祥, 袁寿其, 夏建平 2016 物理学报 65 044303]

    [31]

    Garcia-Chocano V M, Torrent D, Sanchez-Dehesa J 2012 Appl. Phys. Lett. 101 084103

    [32]

    Qian F, Zhao P, Quan L, Liu X Z, Gong X F 2014 Europhys. Lett. 107 34009

    [33]

    Guan Y J, Sun H X, Xia J P, Yuan S Q 2017 J. Phys. D: Appl. Phys. 50 165102

  • [1]

    Zhao J J, Ye H P, Huang K, Chen Z N, Li B W, Qiu C W 2014 Sci. Rep. 4 6257

    [2]

    Gu Y, Cheng Y, Liu X J 2015 Appl. Phys. Lett. 107 133503

    [3]

    Xia J P, Sun H X 2015 Appl. Phys. Lett. 106 063505

    [4]

    Zheng L, Guo J Z 2016 Acta Phys. Sin. 65 044305 (in Chinese) [郑莉, 郭建中 2016 物理学报 65 044305]

    [5]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Phys. D: Appl. Phys. 42 185505

    [6]

    Lin S C S, Huang T J, Sun J H, Wu T T 2009 Phys. Rev. B 79 094302

    [7]

    Martin T P, Layman C N, Moore K M, Orris G J 2012 Phys. Rev. B 85 161103

    [8]

    Torrent D, Snchez-Dehesa J 2007 New J. Phys. 9 323

    [9]

    Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z, Liu Z Y 2010 Appl. Phys. Lett. 96 263502

    [10]

    Zhang S, Yin L L, Fang N 2009 Phys. Rev. Lett. 102 194301

    [11]

    Zigoneanu L, Popa B I, Cummer S A 2011 Phys. Rev. B 84 024305

    [12]

    Li Y, Liang B, Tao X, Zhu X F, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 233508

    [13]

    Wang W Q, Xie Y B, Konneker A, Popa B I, Cummer S A 2014 Appl. Phys. Lett. 105 101904

    [14]

    Yuan B G, Cheng Y, Liu X J 2015 Appl. Phys. Express 8 027301

    [15]

    Lu G X, Ding E L, Wang Y Y, Ping X Y, Cui J, Liu X Z, Liu X J 2017 Appl. Phys. Lett. 110 123507

    [16]

    Mei J, Wu Y 2014 New J. Phys. 16 123007

    [17]

    Jahdali R A, Wu Y 2016 Appl. Phys. Lett. 108 031902

    [18]

    Xia J P, Sun H X, Cheng Q, Xu Z, Chen H, Yuan S Q, Zhang S Y, Ge Y, Guan Y J 2016 Appl. Phys. Express 9 057301

    [19]

    Guan Y J, Sun H X, Liu S S, Yuan S Q, Xia J P, Ge Y 2016 Chin. Phys. B 25 104302

    [20]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546

    [21]

    Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, Liang B, Cheng J C 2015 Sci. Rep. 5 10966

    [22]

    Tang K, Qiu C Y, Ke M Z, Lu J Y, Ye Y T, Liu Z Y 2014 Sci. Rep. 4 6517

    [23]

    Wang X P, Wan L L, Chen T N, Song A L, Wang F 2016 J. Appl. Phys. 120 014902

    [24]

    Gao H, Gu Z M, Liang B, Zou X Y, Yang J, Yang J, Cheng J C 2016 Appl. Phys. Lett. 108 073501

    [25]

    Tian Y, Wei Q, Cheng Y, Xu Z, Liu X J 2015 Appl. Phys. Lett. 107 221906

    [26]

    Fan X D, Zhu Y F, Liang B, Yang J, Cheng J C 2016 Appl. Phys. Lett. 109 243501

    [27]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [28]

    Dehesa J S, Angelov M I, Cervera F, Cai L W 2009 Appl. Phys. Lett. 95 204102

    [29]

    Ge Y, Sun H X, Liu C, Qian J, Yuan S Q, Xia J P, Guan Y J, Zhang S Y 2016 Appl. Phys. Express 9 066701

    [30]

    Liu C, Sun H X, Yuan S Q, Xia J P 2016 Acta Phys. Sin. 65 044303 (in Chinese) [刘宸, 孙宏祥, 袁寿其, 夏建平 2016 物理学报 65 044303]

    [31]

    Garcia-Chocano V M, Torrent D, Sanchez-Dehesa J 2012 Appl. Phys. Lett. 101 084103

    [32]

    Qian F, Zhao P, Quan L, Liu X Z, Gong X F 2014 Europhys. Lett. 107 34009

    [33]

    Guan Y J, Sun H X, Xia J P, Yuan S Q 2017 J. Phys. D: Appl. Phys. 50 165102

  • [1] 齐海东, 王晶, 陈中军, 吴忠华, 宋西平. 温度对马氏体和铁素体晶格常数影响规律. 物理学报, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [2] 王钰豪, 刘建国, 徐亮, 刘文清, 宋庆利, 金岭, 徐寒杨. 不同温度压力对浓度反演精度的定量分析. 物理学报, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [3] 刘金河, 沈壮志, 林书玉. 机械搅拌对声空化动力学特性的影响. 物理学报, 2021, 70(22): 224301. doi: 10.7498/aps.70.20211244
    [4] 郭威, 杨德森. 非均匀波导中的声聚焦. 物理学报, 2020, 69(7): 074301. doi: 10.7498/aps.69.20191854
    [5] 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究. 物理学报, 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [6] 孙宏祥, 方欣, 葛勇, 任旭东, 袁寿其. 基于蜷曲空间结构的近零折射率声聚焦透镜. 物理学报, 2017, 66(24): 244301. doi: 10.7498/aps.66.244301
    [7] 刘宸, 孙宏祥, 袁寿其, 夏建平. 基于温度梯度分布的宽频带声聚焦效应. 物理学报, 2016, 65(4): 044303. doi: 10.7498/aps.65.044303
    [8] 阴明, 周寿桓, 冯国英. 可调谐准相位匹配高效宽带二次谐波转换. 物理学报, 2012, 61(23): 234206. doi: 10.7498/aps.61.234206
    [9] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [10] 杨丽君, 马立金, 吕东启, 张连水. 四能级系统中相位控制电磁诱导透明研究. 物理学报, 2011, 60(10): 104205. doi: 10.7498/aps.60.104205
    [11] 杨志春, 吴锋, 郭方中, 张春萍. 热声网络的辛对称特征. 物理学报, 2011, 60(8): 084303. doi: 10.7498/aps.60.084303
    [12] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [13] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [14] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究. 物理学报, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [15] 王丽, 李根全, 肖绍武, 郑长波. 四能级原子系统中电磁感应吸收的相位控制. 物理学报, 2010, 59(12): 8512-8517. doi: 10.7498/aps.59.8512
    [16] 陈丕恒, 敖冰云, 李炬, 李嵘, 申亮. 温度对bcc铁中He行为影响的模拟研究. 物理学报, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [17] 雷佑铭, 徐 伟. 一类约瑟夫森结混沌系统的谐和共振控制. 物理学报, 2008, 57(6): 3342-3352. doi: 10.7498/aps.57.3342
    [18] 李晓奇, 王 剑, 王 飞, 胡响明. 非旋波耦合条件下微波控制的光学双稳与多稳. 物理学报, 2008, 57(4): 2236-2241. doi: 10.7498/aps.57.2236
    [19] 马 慧, 卜凡阁, 乔红霞, 仝殿民, 樊锡君. Doppler展宽的封闭原子系统中无反转增益的相位控制. 物理学报, 2008, 57(1): 206-211. doi: 10.7498/aps.57.206
    [20] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应. 物理学报, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
计量
  • 文章访问数:  5184
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-24
  • 修回日期:  2017-05-16
  • 刊出日期:  2017-08-05

/

返回文章
返回