搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态三元Fe-Cr-Ni合金中快速枝晶生长与溶质分布规律

李路远 阮莹 魏炳波

液态三元Fe-Cr-Ni合金中快速枝晶生长与溶质分布规律

李路远, 阮莹, 魏炳波
PDF
导出引用
导出核心图
  • 采用落管方法实现了液态三元Fe-Cr-Ni合金的深过冷与快速凝固,合金液滴的冷却速率和过冷度均随液滴直径的减小而迅速增大.两种成分合金近平衡凝固组织均为粗大板条状α相.在快速凝固过程中,不同直径Fe81.4Cr13.9Ni4.7合金液滴凝固组织均为板条状α相,其固态相变特征很明显,随着过冷度增大,初生δ相由具有发达主干的粗大枝晶转变为等轴晶.Fe81.4Cr4.7Ni13.9合金液滴凝固组织由α相晶粒组成,随着过冷度增大,初生γ相由具有发达主干的粗大枝晶转变为等轴晶,其枝晶主干长度和二次分枝间距均显著下降,晶粒内溶质的相对偏析度也明显减小,溶质Ni的相对偏析度始终大于溶质Cr.理论计算表明,与γ相相比,δ相枝晶生长速度更大.在实验获得的过冷度范围内,两种Fe-Cr-Ni合金枝晶生长过程均由热扩散控制.
      通信作者: 阮莹, ruany@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1660108,51327901)、陕西省科学技术研究发展计划工业科技攻关项目(批准号:2016GY-247)和中央高校基本科研业务费(批准号:3102018jgc009)资助的课题.
    [1]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [2]

    Llamazares J L S, Sanchez T, Santos J D, Pérez M J, Sanchez M L, Hernando B, Escoda L, Suñol J J, Varga R 2008 Appl. Phys. Lett. 92 012513

    [3]

    Chen Q J, Shen J, Fan H B, Sun J F, Huang Y J, Mccartney D G 2005 Chin. Phys. Lett. 22 1736

    [4]

    Lavernia E J, Srivatsan T S 2010 J. Mater. Sci. 45 287

    [5]

    Ruan Y, Mohajerani A, Dao M 2016 Sci. Rep. 6 31684

    [6]

    Quirinale D G, Rustan G E, Kreyssig A, Goldman A I 2015 Appl. Phys. Lett. 106 241906

    [7]

    Niyomsoan S, Gargarella P, Stoica M, Khoshkoo M S, Khn U, Eckert J 2013 J. Appl. Phys. 113 104308

    [8]

    Chan W L, Averback R S, Cahill D G, Ashkenazy Y 2009 Phys. Rev. Lett. 102 095701

    [9]

    Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson D S, Goldman A I, Kelton K F 2008 Phys. Rev. B 77 184102

    [10]

    Zhou J K, Li J G 2008 Appl. Phys. Lett. 92 141915

    [11]

    Santos J D, Sanchez T, Alvarez P, Sanchez M L, Llamazares J L S, Hernando B, Escoda L, Suñol J J, Varga R 2008 J. Appl. Phys. 103 07B326

    [12]

    Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917

    [13]

    Ruan Y 2013 Phys. Status Solidi B 250 73

    [14]

    Lu X Y, Liao S, Ruan Y, Dai F P 2012 Acta Phys. Sin. 61 216102 (in Chinese) [鲁晓宇, 廖霜, 阮莹, 代富平 2012 物理学报 61 216102]

    [15]

    Fransaer J, Wagner A V, Spaepen F 2000 J. Appl. Phys. 87 1801

    [16]

    Ruan Y, Wang X J 2015 Phys. Status Solidi B 252 361

    [17]

    Chen K P, L P, Wang H P 2017 Acta Phys. Sin. 66 068101 (in Chinese) [陈克萍, 吕鹏, 王海鹏 2017 物理学报 66 068101]

    [18]

    Tournier S, Vinet B, Pasturel A, Ansara I, Desré P J 1998 Phys. Rev. B 57 3340

    [19]

    Wu Y H, Chang J, Wang W L, Wei B 2016 Appl. Phys. Lett. 109 154101

    [20]

    Hanlon A B, Matson D M, Hyers R W 2006 Phil. Mag. Lett. 86 165

    [21]

    Fu J W, Yang Y S, Guo J J, Tong W H 2008 Mater. Sci. Technol. 24 941

    [22]

    Fu J W, Yang Y S, Guo J J, Ma J C, Tong W H 2009 Mater. Sci. Technol. 25 1013

    [23]

    Fukumoto S, Okane T, Umeda T, Kurz W 2000 ISIJ Int. 40 677

    [24]

    Yang X Y, Peng X, Chen J, Wang F H 2007 Appl. Surf. Sci. 253 4420

    [25]

    Cronemberger M E R, Mariano N A, Coelho M F C, Pereira J N, Ramos é C T, Mendonça R D, Nakamatsu S, Maestrelli S C 2014 Mater. Sci. Forum 802 398

    [26]

    Effenberg G, Ilyenko S, Dovbenko O, MSIT 2008 Ternary Alloy Systems (Vol. 11) (Berlin: Springer-Verlag Berlin Heidelberg) pp218-249

    [27]

    Brooks J A, Thompson A W 1991 Int. Mater. Rev. 36 16

    [28]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Mater. 45 2821

    [29]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [30]

    Löser W, Herlach D M 1992 Metall. Trans. A 23 1585

    [31]

    Bobadilla M, Lacaze J, Lesoult G 1988 J. Cryst. Growth 89 531

    [32]

    Chuang Y Y, Hsieh K C, Chang Y A 1986 Metall. Trans. A 17 1373

    [33]

    Gale W F, Totemeier T C 2004 Smithells Metals Reference Book (8th Ed.) (Amsterdam: Elsevier Butterworth-Heinemann publications) pp14-11

  • [1]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [2]

    Llamazares J L S, Sanchez T, Santos J D, Pérez M J, Sanchez M L, Hernando B, Escoda L, Suñol J J, Varga R 2008 Appl. Phys. Lett. 92 012513

    [3]

    Chen Q J, Shen J, Fan H B, Sun J F, Huang Y J, Mccartney D G 2005 Chin. Phys. Lett. 22 1736

    [4]

    Lavernia E J, Srivatsan T S 2010 J. Mater. Sci. 45 287

    [5]

    Ruan Y, Mohajerani A, Dao M 2016 Sci. Rep. 6 31684

    [6]

    Quirinale D G, Rustan G E, Kreyssig A, Goldman A I 2015 Appl. Phys. Lett. 106 241906

    [7]

    Niyomsoan S, Gargarella P, Stoica M, Khoshkoo M S, Khn U, Eckert J 2013 J. Appl. Phys. 113 104308

    [8]

    Chan W L, Averback R S, Cahill D G, Ashkenazy Y 2009 Phys. Rev. Lett. 102 095701

    [9]

    Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson D S, Goldman A I, Kelton K F 2008 Phys. Rev. B 77 184102

    [10]

    Zhou J K, Li J G 2008 Appl. Phys. Lett. 92 141915

    [11]

    Santos J D, Sanchez T, Alvarez P, Sanchez M L, Llamazares J L S, Hernando B, Escoda L, Suñol J J, Varga R 2008 J. Appl. Phys. 103 07B326

    [12]

    Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917

    [13]

    Ruan Y 2013 Phys. Status Solidi B 250 73

    [14]

    Lu X Y, Liao S, Ruan Y, Dai F P 2012 Acta Phys. Sin. 61 216102 (in Chinese) [鲁晓宇, 廖霜, 阮莹, 代富平 2012 物理学报 61 216102]

    [15]

    Fransaer J, Wagner A V, Spaepen F 2000 J. Appl. Phys. 87 1801

    [16]

    Ruan Y, Wang X J 2015 Phys. Status Solidi B 252 361

    [17]

    Chen K P, L P, Wang H P 2017 Acta Phys. Sin. 66 068101 (in Chinese) [陈克萍, 吕鹏, 王海鹏 2017 物理学报 66 068101]

    [18]

    Tournier S, Vinet B, Pasturel A, Ansara I, Desré P J 1998 Phys. Rev. B 57 3340

    [19]

    Wu Y H, Chang J, Wang W L, Wei B 2016 Appl. Phys. Lett. 109 154101

    [20]

    Hanlon A B, Matson D M, Hyers R W 2006 Phil. Mag. Lett. 86 165

    [21]

    Fu J W, Yang Y S, Guo J J, Tong W H 2008 Mater. Sci. Technol. 24 941

    [22]

    Fu J W, Yang Y S, Guo J J, Ma J C, Tong W H 2009 Mater. Sci. Technol. 25 1013

    [23]

    Fukumoto S, Okane T, Umeda T, Kurz W 2000 ISIJ Int. 40 677

    [24]

    Yang X Y, Peng X, Chen J, Wang F H 2007 Appl. Surf. Sci. 253 4420

    [25]

    Cronemberger M E R, Mariano N A, Coelho M F C, Pereira J N, Ramos é C T, Mendonça R D, Nakamatsu S, Maestrelli S C 2014 Mater. Sci. Forum 802 398

    [26]

    Effenberg G, Ilyenko S, Dovbenko O, MSIT 2008 Ternary Alloy Systems (Vol. 11) (Berlin: Springer-Verlag Berlin Heidelberg) pp218-249

    [27]

    Brooks J A, Thompson A W 1991 Int. Mater. Rev. 36 16

    [28]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Mater. 45 2821

    [29]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [30]

    Löser W, Herlach D M 1992 Metall. Trans. A 23 1585

    [31]

    Bobadilla M, Lacaze J, Lesoult G 1988 J. Cryst. Growth 89 531

    [32]

    Chuang Y Y, Hsieh K C, Chang Y A 1986 Metall. Trans. A 17 1373

    [33]

    Gale W F, Totemeier T C 2004 Smithells Metals Reference Book (8th Ed.) (Amsterdam: Elsevier Butterworth-Heinemann publications) pp14-11

  • [1] 臧渡洋, 王海鹏, 魏炳波. 深过冷三元Ni-Cu-Co合金的快速枝晶生长. 物理学报, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [2] 魏绍楼, 黄陆军, 常健, 杨尚京, 耿林. 液态Ti-Al合金的深过冷与快速枝晶生长. 物理学报, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [3] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [4] 蔡启舟, 陈立亮, 龙文元, 吕冬兰, 夏春, 潘美满. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 物理学报, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [5] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [6] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [7] 沙莎, 王伟丽, 吴宇昊, 魏炳波. 深过冷条件下Co7Mo6金属间化合物的枝晶生长和维氏硬度研究. 物理学报, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [8] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [9] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [10] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [11] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征. 物理学报, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [12] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [13] 蔡启舟, 魏伯康, 陈立亮, 龙文元. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [14] 朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平. 落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能. 物理学报, 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [15] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究. 物理学报, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [16] 鲁晓宇, 廖霜, 阮莹, 代富平. 快速凝固Ti-Cu-Fe合金的相组成与组织演变规律. 物理学报, 2012, 61(21): 216102. doi: 10.7498/aps.61.216102
    [17] 段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新. 镁基合金自由枝晶生长的相场模拟研究. 物理学报, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [18] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究. 物理学报, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [19] 李志强, 王伟丽, 翟薇, 魏炳波. 快速凝固Fe62.1Sn27.9Si10合金的分层组织和偏晶胞形成机理. 物理学报, 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [20] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响. 物理学报, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
  • 引用本文:
    Citation:
计量
  • 文章访问数:  504
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-09
  • 修回日期:  2018-05-08
  • 刊出日期:  2018-07-20

液态三元Fe-Cr-Ni合金中快速枝晶生长与溶质分布规律

  • 1. 西北工业大学应用物理系, 西安 710072
  • 通信作者: 阮莹, ruany@nwpu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:U1660108,51327901)、陕西省科学技术研究发展计划工业科技攻关项目(批准号:2016GY-247)和中央高校基本科研业务费(批准号:3102018jgc009)资助的课题.

摘要: 采用落管方法实现了液态三元Fe-Cr-Ni合金的深过冷与快速凝固,合金液滴的冷却速率和过冷度均随液滴直径的减小而迅速增大.两种成分合金近平衡凝固组织均为粗大板条状α相.在快速凝固过程中,不同直径Fe81.4Cr13.9Ni4.7合金液滴凝固组织均为板条状α相,其固态相变特征很明显,随着过冷度增大,初生δ相由具有发达主干的粗大枝晶转变为等轴晶.Fe81.4Cr4.7Ni13.9合金液滴凝固组织由α相晶粒组成,随着过冷度增大,初生γ相由具有发达主干的粗大枝晶转变为等轴晶,其枝晶主干长度和二次分枝间距均显著下降,晶粒内溶质的相对偏析度也明显减小,溶质Ni的相对偏析度始终大于溶质Cr.理论计算表明,与γ相相比,δ相枝晶生长速度更大.在实验获得的过冷度范围内,两种Fe-Cr-Ni合金枝晶生长过程均由热扩散控制.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回