搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究

张秉章 宋张勇 张明武 刘璇 钱程 方兴 邵曹杰 王伟 刘俊亮 朱志超 孙良亭 于得洋

引用本文:
Citation:

类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究

张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋

Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface

Zhang Bing-Zhang, Song Zhang-Yong, Zhang Ming-Wu, Liu Xuan, Qian Cheng, Fang Xin, Shao Chao-Jie, Wang Wei, Liu Jun-Liang, Zhu Zhi-Chao, Sun Liang-Ting, Yu De-Yang
PDF
导出引用
  • 本文利用“二态矢量模型”详细研究了高电荷态O7+、N6+离子入射Al表面时中间里德堡态的形成过程,给出了电子被俘获至不同量子数nA=2-7)的几率,以及电子俘获至里德堡态最可能的离子-表面距离。计算结果表明,较大的主量子数nA对应较小的里德堡态几率,因此O7+、N6+离子入射Al表面时辐射的X射线主要来源于较小的nA至基态的退激。为了验证计算结果,我们测量了O7+、N6+ 离子入射Al 表面的X射线发射谱,并运用FAC程序计算了不同高里德堡态退激到基态的跃迁能(np-1s)。实验测量到O、N 的K-X射线峰,其特征峰的中心值接近主量子数n=2至n=1的跃迁能,说明发射的X 射线主要来源于2p-1s的跃迁,与“二态矢量模型”理论计算的几率一致。
    The study of the interaction between highly charged ions and solid surfaces not only has great significance for basic scientific research such as atomic physics, astrophysics, and high energy density physics but also has promising application prospects in biomedicine, nanotechnology, surface analysis, and microelectronics. In this paper, the intermediate Rydberg states formed during highly charged O7+ and N6+ ions incident on Al surface are studied theoretically by using the two-state vector model. Both the probability of electron capture into different Rydberg states (nA = 2 − 7) and the most probable neutralization distances are given. The calculation shows that the larger principal quantum number nA is relevant to smaller probability. Therefore, the X-rays emitted by O7+ and N6+ ions incident on the Al surface come mainly from the de-excitation of the smaller nA to the ground state. In order to confirm the calculations, we measured the X-ray emission spectra of O7+ and N6+ ions in collisions with the Al surface in the energy range of 3-20 keV/q. The experiments were performed at an ECR ion source located in Institute of modern physics. We also calculated the transition energies (np-1s) from different high Rydberg states to the ground state by using the FAC code. The center of the measured K X-ray peak is close to the calculated transition energy from the principal quantum number n=2 to n=1, it is consistent with our results obtained by the two-state vector model as well. In addition, we found the experimental K X-ray yield for O7+ ions incidence at lower energy collisions is almost the same with N6+ ions, but larger at higher energy collisions. When the ion incident kinetic energy is low, the X-ray emission is mainly owing to the decay of “above the surface”hollow atoms. Because of the small difference in the critical distances for the capture of electrons by O7+ and N6+ to form hollow atoms, the X-ray yields produced in both cases are almost the same at low energy collisions. In contrast, as increasing the incident energy, the ions have a long-range in the target, so the contribution from the decay of “above the surface” and “below the surface”hollow atoms need to be considered at the same time.
  • [1]

    Arnau A, Aumayr F, Echenique P M, Grether M, Heiland W, Limburg J, Morgenstern R, Roncin P, Schippers S, Schuch R, Stolterfoht N, Varga P, Zouros T J M, Winter H 1997 Surf. Sci. Rep. 27113

    [2]

    Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Prog. Surf. Sci. 6123

    [3]

    Winter H, Aumayr F 1999 J. Phys. B:At. Mol. Opt. Phys. 32 R39

    [4]

    Song Z Y, Yang Z H, Xiao G Q, Xu Q M, Chen J, Yang B, Yang Z R 2011 Eur. Phys. J. D 64197

    [5]

    Zhao Y T, Xiao G Q, Zhang X A, Yang Z H, Zhan W L, Chen X M, Li F L 2006 Nucl. Instrum. Methods Phys. Res., Sect. B 24572

    [6]

    Zhao Y T, Xiao G Q, Zhang X A, Yang Z H, Zhang Y P, Zhan W L, Chen X M, Li F L 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 258121

    [7]

    Lei Y, Cheng R, Zhou X M, Wang X, Wang Y Y, Ren J R, Zhao Y T, Ma X W, Xiao G Q 2018 Eur. Phys. J. D 72132

    [8]

    Zhang H, Chen X, Yang Z, Xu J, Cui Y, Shao J, Zhang X, Zhao Y, Zhang Y, Xiao G 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 2681564

    [9]

    Nedeljković L D, Nedeljković N N, Božanič D K 2006 Phys. Rev. A 74032901

    [10]

    Borisov A G, Zimny R, Teillet-Billy D, Gauyacq J P 1996 Phys. Rev. A 532457

    [11]

    Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 445674

    [12]

    Iwai Y, Murakoshi D, Kanai Y, Oyama H, Ando K, Masuda H, Nishio K, Nakao M, Tamamura T, Komaki K, Yamazaki Y 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 193504

    [13]

    Kanai Y, Nakai Y, Iwai Y, Ikeda T, Hoshino M, Nishio K, Masuda H, Yamazaki Y 2005 Nucl. Instrum. Methods Phys. Res. Sect. B 233103

    [14]

    TökWsi K, Wirtz L, Lemell C, Burgdörfer J 2000 Phys. Rev. A 61020901

    [15]

    Ninomiya S, Yamazaki Y, Koike F, Masuda H, Azuma T, Komaki K, Kuroki K, Sekiguchi M 1997 Phys. Rev. Lett. 784557

    [16]

    Ninomiya S, Yamazaki Y, Azuma T, Komaki K, Koike F, Masuda H, Kuroki K, Sekiguchi M 1997 Phys. Scr. T73316

    [17]

    Aumayr F, Kurz H, Schneider D, Briere M A, McDonald J W, Cunningham C E, Winter H 1993 Phys. Rev. Lett. 711943

    [18]

    Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91042707

    [19]

    Nedeljković N N, Majkić M D 2007 Phys. Rev. A 76042902

    [20]

    Nedeljković N N, Nedeljković L D, Mirković M A 2003 Phys. Rev. A 68012721

    [21]

    Gillaspy J D, Pomeroy J M, Perrella A C, Grube H 2007 J. Phys. Conf. Ser. 58451

    [22]

    Tona M, Watanabe H, Takahashi S, Nakamura N, Yoshiyasu N, Sakurai M, Terui T, Mashiko S, Yamada C, Ohtani S 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 256543

    [23]

    Heller R, Facsko S, Wilhelm R A, Moller W 2008 Phys. Rev. Lett. 101096102

    [24]

    El-Said A S, Wilhelm R A, Heller R, Facsko S, Lemell C, Wachter G, Burgdorfer J, Ritter R, Aumayr F 2012 Phys. Rev. Lett. 109117602

    [25]

    Nedeljković N N, Majkić M D, Božanić D K, Dojćilović R J 2016 J. Phys. B:At. Mol. Opt. Phys. 49125201

    [26]

    Nedeljković N N, Majkić M D, Galijaš S M D 2012 J. Phys. B:At. Mol. Opt. Phys. 45215202

    [27]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team 2021 NIST Atomic Spectra Database[EB/OL] https://physics.nist.gov/asd[2021-12-27]

  • [1] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, doi: 10.7498/aps.72.20230214
    [2] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望. 物理学报, doi: 10.7498/aps.72.20230986
    [3] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, doi: 10.7498/aps.70.20212434
    [4] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线. 物理学报, doi: 10.7498/aps.70.20210757
    [5] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 周贤明, 肖国青. 不同电荷态的129Xeq+激发Au的X射线发射研究. 物理学报, doi: 10.7498/aps.64.053201
    [6] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱. 物理学报, doi: 10.7498/aps.62.063202
    [7] 龙精明, 王华胜. 氯化氢共振多光子电离光谱:F1Δ2态的光谱微扰分析. 物理学报, doi: 10.7498/aps.62.163302
    [8] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, doi: 10.7498/aps.61.163202
    [9] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 129Xeq+激发Mo表面产生的X射线谱. 物理学报, doi: 10.7498/aps.59.6059
    [10] 邹贤容, 邵剑雄, 陈熙萌, 崔莹. 高电荷态Ar17+离子在表面以下过程中发射X射线分支比及各分支能量的研究. 物理学报, doi: 10.7498/aps.59.6064
    [11] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱. 物理学报, doi: 10.7498/aps.58.6920
    [12] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响. 物理学报, doi: 10.7498/aps.58.3833
    [13] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, doi: 10.7498/aps.58.5578
    [14] 杨治虎, 宋张勇, 崔 莹, 张红强, 阮芳芳, 邵剑雄, 杜 娟, 刘玉文, 朱可欣, 张小安, 邵曹杰, 卢荣春, 于得洋, 陈熙萌, 蔡晓红. Ar16+和Ar17+离子与Zr作用产生的X射线谱. 物理学报, doi: 10.7498/aps.57.803
    [15] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究. 物理学报, doi: 10.7498/aps.57.2161
    [16] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响. 物理学报, doi: 10.7498/aps.57.137
    [17] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额. 物理学报, doi: 10.7498/aps.56.5734
    [18] 王瑜玉, 赵永涛, 肖国青, 房 燕, 张小安, 王铁山, 王释伟, 彭海波. 高电荷态离子207Pbq+(24≤q≤36)与Si(110)固体表面作用的电子发射研究. 物理学报, doi: 10.7498/aps.55.673
    [19] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, doi: 10.7498/aps.55.2221
    [20] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱. 物理学报, doi: 10.7498/aps.54.85
计量
  • 文章访问数:  1721
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 上网日期:  2022-03-29

/

返回文章
返回