搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cs2AgBi0.75Sb0.25Br6钙钛矿太阳能电池的优化设计

王月荣 田汉民 张登琪 刘维龙 马旭蕾

引用本文:
Citation:

Cs2AgBi0.75Sb0.25Br6钙钛矿太阳能电池的优化设计

王月荣, 田汉民, 张登琪, 刘维龙, 马旭蕾

Optimal design of Cs2AgBi0.75Sb0.25Br6 perovskite solar cells

Wang Yue-Rong, Tian Han-Min, Zhang Deng-Qi, Liu Wei-Long, Ma Xu-Lei
PDF
HTML
导出引用
  • 双钙钛矿太阳能电池以其低成本、高性能、环境友好、稳定性强而备受关注. 本研究使用Silvaco TCAD分析了Cs2AgBi0.75Sb0.25Br6太阳能电池的钙钛矿层厚度、能带偏移、金属电极功函数、传输层厚度及掺杂浓度与器件效率的关系, 以提升器件性能. 基于空穴传输层为Spiro-OMeTAD, 电子传输层为ZnO的器件进行初始研究, 其显示出12.66%的光电转换效率. 结果表明, 当钙钛矿层厚度大于500 nm时, 效率趋于饱和. 最佳导带偏移量为0—+0.5 eV, 最佳价带偏移量为–0.1—+0.2 eV. 在改变器件的电子传输层为ZnOS, 空穴传输层分别为MoO3, Cu2O和CuSCN的情况下, 优化其厚度和掺杂浓度, 最终空穴传输层为Cu2O的双钙钛矿太阳能电池理论光电转换效率达22.85%, 比目前报道的理论效率值相对提升了25.6%. 此外, 当金属电极功函数小于–4.9 eV时易实现最佳效率. 本工作为开发高性能无铅钙钛矿太阳能电池提供了理论指导.
    Double perovskite solar cells have attracted much attention due to their low cost, high performance, environmental friendliness, and strong stability. In this study, the effect of thickness of perovskite layer, band offset, metal electrode work function, the thickness and doping concentration of the transport layer on the efficiency of Cs2AgBi0.75Sb0.25Br6 solar cells are analyzed by using Silvaco TCAD to improve device performance. This preliminary study of device based on Spiro-OMeTAD as hole transport layer (HTL) and ZnO as electron transport layer (ETL) shows that the photovoltaic conversion efficiency (PCE) is 12.66%. The results show that the efficiency gradually saturates when the thickness of the perovskite layer is greater than 500 nm. The optimal conduction band offset (CBO) ranges from 0 eV to +0.5 eV and the optimal valence band offset (VBO) from –0.1 eV to +0.2 eV. After changing the device's ETL into ZnOS and HTLs into MoO3, Cu2O and CuSCN, respectively, and optimizing their thickness values and doping concentrations, the final theoretical photovoltaic conversion efficiency of the double perovskite solar cell with an HTL of Cu2O can reach 22.85%, which is increased by 25.6% compared with the currently reported theoretical efficiency value. Moreover, the optimal efficiency is achieved when the metal electrode work function is less than –4.9 eV. This work will help find suitable materials for the transport layer and provide guidance for developing the high-performance and lead-free perovskite solar cells.
      通信作者: 田汉民, tianhanmin@hebut.edu.cn
      Corresponding author: Tian Han-Min, tianhanmin@hebut.edu.cn
    [1]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [2]

    Tong J, Song Z, Kim D H, Chen X, Chen C, Palmstrom A F, Ndione P F, Reese M O, Dunfield S P, Reid O G 2019 Science 364 475Google Scholar

    [3]

    Alarousu E, El-Zohry A M, Yin J, Zhumekenov A A, Yang C, Alhabshi E, Gereige I, AlSaggaf A, Malko A V, Bakr O M, Mohammed O F 2017 J. Phys. Chem. Lett. 8 4386Google Scholar

    [4]

    Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S 2015 Science 347 967Google Scholar

    [5]

    Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar

    [6]

    Zhang Z, Yang G, Zhou C, Chung C C, Hany I 2019 RSC Adv. 9 23459Google Scholar

    [7]

    Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138Google Scholar

    [8]

    Hutter E M, Gélvez-Rueda M C, Bartesaghi D, Grozema F C, Savenije T 2018 ACS Omega 3 11655Google Scholar

    [9]

    Du K Z, Meng W, Wang X, Yan Y, Mitzi D B 2017 Angew. Chem. Int. Ed. 56 8158Google Scholar

    [10]

    Pantaler M, Cho K T, Queloz V I E, Benito I G, Fettkenhauer C, Anusca I, Nazeeruddin M K, Lupascu D C, Grancini G 2018 ACS Energy Lett. 3 1781Google Scholar

    [11]

    Gao W, Ran C, Xi J, Jiao B, Zhang W, Wu M, Hou X, Wu Z 2018 Chemphyschemistry 19 1696Google Scholar

    [12]

    Liu Y, Zhang L, Wang M, Zhong Y J, Huang M R, Long Y, Zhu H W 2019 Mater. Today 28 25Google Scholar

    [13]

    Madan J, Pandey R, Sharma R 2020 Sol. Energy 197 212Google Scholar

    [14]

    Singh N, Agarwal A, Agarwal M 2021 Opt. Mater. 114 110964Google Scholar

    [15]

    Zhao P, Liu Z, Lin Z, Chen D, Su J, Zhang C, Zhang J, Chang J, Hao Y 2018 Sol. Energy 169 11Google Scholar

    [16]

    Kanoun A A, Kanoun M B, Merad A E, Goumri-Said S 2019 Sol. Energy 182 237Google Scholar

    [17]

    Jalalian D, Ghadimi A, Kiani A 2019 Eur. Phys. J. 87 10101Google Scholar

    [18]

    Rahman S I, Faisal S, Ahmed S, Dhrubo T I 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) Bengaluru, India, 30 September–2 October, 2017 pp546–550

    [19]

    Gan Y J, Bi X G, Liu Y C, Qin B Y, Li Q L, Jiang Q B, Mo P 2020 Energies 13 5907Google Scholar

    [20]

    Minemoto T, Murata M 2015 Sol. Energy Mater Sol. Cells 133 8Google Scholar

    [21]

    Ahmed S, Jannat F, Alim M A 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT) Dhaka, Bangladesh, November 21, 2020 pp297–301

    [22]

    Minemoto T, Julayhi J 2013 Curr. Appl. Phys. 13 103Google Scholar

    [23]

    Ahmed A, Riaz K, Mehmood H, Tauqeer T, Ahmad Z 2020 Opt. Mater. 105 109897Google Scholar

    [24]

    Haider S Z, Anwar H, Jamil Y, Shahid M 2020 J. Phys. Chem. Solids 136 109147Google Scholar

    [25]

    Ding C, Zhang Y H, Liu F, Kitabatake Y, Hayase S, Toyoda T, Yoshino K, Minemoto T, Katayama K, Shen Q 2018 Nano Energy 53 17Google Scholar

    [26]

    Aouaj M A, Diaz R, Belayachi A, Rueda F, Abd-Lefdil M 2009 Mater. Res. Bull. 44 1458Google Scholar

    [27]

    Way A, Luke J, Evans A D, Li Z, Kim J-S, Durrant J R, Hin Lee H K, Tsoi W C 2019 AIP Adv. 9 085220Google Scholar

    [28]

    Huang L J, Ren N F, Li B J, Zhou M 2014 Mater. Lett. 116 405Google Scholar

    [29]

    Liu J, Cao W Q, Jin H B, Yuan J, Zhang D Q, Cao M S 2015 J. Mater. Chem. C 3 4670Google Scholar

    [30]

    Pantaler M, Olthof S, Meerholz K, Lupascu D C 2019 MRS Adv. 4 3545Google Scholar

    [31]

    Dai Z, Zheng D, Chen J, Yang B 2021 Chem. Phys. Lett. 770 138440Google Scholar

    [32]

    Almosni S, Cojocaru L, Li D, Uchida S, Kubo T, Segawa H 2017 Energy Technol. 5 1767Google Scholar

    [33]

    Govindaraj G, Baskaran N, Shahi K, Monoravi P 1995 Solid State Ion 76 47Google Scholar

    [34]

    Collaboration: Authors and editors of the volumes III/17E-17F-41C. Non-Tetrahedrally Bonded Elements and Binary Compounds I 1998 1

    [35]

    Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G 2010 J. Phys. Chem. C 114 9111Google Scholar

    [36]

    Zhang Q, Dandeneau C S, Zhou X, Cao G 2009 Adv. Mater. 21 4087Google Scholar

    [37]

    Gloeckler M 2005 Ph. D. Dissertation (Fort collins, Colorado: Colorado State University

    [38]

    Eom K, Kwon U, Kalanur S S, Park H J, Seo H 2017 J. Mater. Chem. A 5 2563Google Scholar

    [39]

    Chang J H, Shen S Y, Dong C D, Shkir M, Kumar M 2022 Chemosphere 287 131960Google Scholar

    [40]

    Wang Y, Lany S, Ghanbaja J, Fagot-Revurat Y, Chen Y, Soldera F, Horwat D, Mücklich F, Pierson J 2016 Phys. Rev. B 94 245418Google Scholar

    [41]

    Wijeyasinghe N, Regoutz A, Eisner F, Du T, Tsetseris L, Lin Y H, Faber H, Pattanasattayavong P, Li J, Yan F 2017 Adv. Funct. Mater. 27 1701818Google Scholar

    [42]

    Takahashi R, Dazai T, Tsukahara Y, Borowiak A, Koinuma H 2022 J. Appl. Phys. 131 175302Google Scholar

    [43]

    Meyer E, Mutukwa D, Zingwe N, Taziwa R 2018 Metals 8 667Google Scholar

    [44]

    Rudnyi E B, Vovk O M, Kaibicheva E A, Sidorov L N 1989 J. Chem. Thermodyn. 21 247Google Scholar

    [45]

    Brandt R E, Young M, Park H H, Dameron A, Chua D, Lee Y S, Teeter G, Gordon R G, Buonassisi T 2014 Appl. Phys. Lett. 105 26Google Scholar

    [46]

    Gavrilov S, Zheleznyakova A, Dronov A, Dittrich T 2009 Physics, Chemistry And Application Of Nanostructures: Reviews and Short Notes (World Scientific) pp577–580

    [47]

    Bag A, Radhakrishnan R, Nekovei R, Jeyakumar R 2020 Sol. Energy 196 177Google Scholar

    [48]

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802 [周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 物理学报 71 208802Google Scholar

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802Google Scholar

    [49]

    Zhao P, Lin Z H, Wang J P, Yue M, Su J, Zhang J C, Chang J J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504Google Scholar

    [50]

    王家平2021 硕士学位论文 (西安: 西安电子科技大学)

    Wang J P 2021 M. S. Thesis (Xi'an: Xidian University

    [51]

    Tanaka K, Minemoto T, Takakura H J S E 2009 Sol. Energy 83 477Google Scholar

    [52]

    Saeed M A, Kim S H, Baek K, Hyun J K, Lee S Y, Shim J W 2021 Appl. Surf. Sci. 567 150852Google Scholar

    [53]

    Kim S M, Saeed M A, Kim S H, Shim J W 2020 Appl. Surf. Sci. 527 146840Google Scholar

    [54]

    许李毅飞2022 硕士学位论文 (成都: 电子科技大学)

    Xu L Y F 2022 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [55]

    Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren-Cruz S-H, Seo J, Luo J, Zakeeruddin S M, Tress W R J A E L 2018 ACS Energy Lett. 3 773Google Scholar

    [56]

    Huang X, Du J, Guo X, Lin Z, Ma J, Su J, Feng L, Zhang C, Zhang J, Chang J J S R 2020 Sol. RRL 4 1900336Google Scholar

    [57]

    Parajuli D, Shah D K, KC D, Kumar S, Park M, Pant B J E 2022 Electrochemistry 3 407Google Scholar

    [58]

    Islam M A, Abou Hashish M D, Hatta S M, Soin N B, Khan S, Amin N IOP Conference Series: Materials Science and Engineering p012005

  • 图 1  模拟双钙钛矿太阳能电池的二维结构图

    Fig. 1.  Two-dimensional structure diagram of simulated double perovskite solar cell.

    图 2  器件性能随Cs2AgBi0.75Sb0.25Br6厚度的变化

    Fig. 2.  Variation of device performance with different thickness of Cs2AgBi0.75Sb0.25Br6.

    图 3  导带偏移量为(a)负值与(b)正值时的能带排列图; 价带偏移量为(c)负值与(d)正值时的能带排列图

    Fig. 3.  Energy band alignment diagram with (a) negative and (b) positive CBO; energy band alignment diagram with (c) negative and (d) positive VBO.

    图 4  不同(a)导带偏移量和(b)价带偏移量下Cs2AgBi0.75Sb0.25Br6太阳能电池器件性能变化

    Fig. 4.  Variation of device performance of Cs2AgBi0.75Sb0.25Br6 solar cells with different (a) CBOs and (b) VBOs.

    图 5  Cs2AgBi0.75Sb0.25Br6太阳能电池的不同 (a)负值导带偏移量, (b)正值导带偏移量, (d)负值价带偏移量, (e)正值价带偏移量的能带图; 不同(c)负值导带偏移量和(f)负值价带偏移量下界面缺陷层的载流子复合速率

    Fig. 5.  Energy band diagrams of Cs2AgBi0.75Sb0.25Br6 solar cells with different (a) negative CBOs, (b) positive CBOs, (d) negative VBOs, (e) positive VBOs; carrier recombination rate in interfacial defect layers with different (c) negative CBOs and (f) negative VBOs.

    图 6  不同 (a) ZnOS厚度, (b) HTL厚度, (c) ZnOS掺杂浓度, (d) HTL掺杂浓度下Cs2AgBi0.75Sb0.25Br6太阳能电池的器件性能

    Fig. 6.  Device performance of Cs2AgBi0.75Sb0.25Br6 solar cell with different (a) thickness of ZnOS, (b) thickness of HTL, (c) doping concentration of ZnOS, (d) doping concentration of HTL.

    图 7  不同HTL的Cs2AgBi0.75Sb0.25Br6太阳能电池的(a) J-V曲线图和输出参数, (b)能带图

    Fig. 7.  (a) J-V curves and output parameters, (b) energy band diagrams of Cs2AgBi0.75Sb0.25Br6 solar cells with different HTL.

    图 8  Cs2AgBi0.75Sb0.25Br6太阳能电池的能带图随Cu2O掺杂浓度变化

    Fig. 8.  Variation of energy band diagrams of Cs2AgBi0.75Sb0.25Br6 solar cells with the doping concentration of Cu2O.

    图 9  不同功函数对Cs2AgBi0.75Sb0.25Br6太阳能电池性能的影响

    Fig. 9.  Effect of different work functions on the performance of Cs2AgBi0.75Sb0.25Br6 solar cells.

    图 10  (a)不同金属功函数下的器件能带图; 钙钛矿层的(b)电子浓度和(c)空穴浓度随不同金属功函数的变化

    Fig. 10.  (a) Device energy band diagrams with different metal work functions; variation of (b) electron concentration and (c) hole concentration in perovskite layer with different metal work functions.

    表 1  Cs2AgBi0.75Sb0.25Br6太阳能电池各层材料的参数

    Table 1.  Parameters of each layer material of Cs2AgBi0.75Sb0.25Br6 solar cell.

    ParameterZnOZnOSCs2AgBi0.75Sb0.25Br6Spiro-OMeTADMoO3Cu2OCuSCN
    Permittivity, εr9[29]9[18]6.5[30,31]3[32]12.5[33]7.1[34]10[35]
    Band gap/eV3.3[36]2.83[37]1.8[8]3[38]3[39]2.17[40]3.4[41]
    Affinity/eV4[42]3.6[37]3.58[43]2.45[32]2.5[44]3.2[45]1.9[46]
    NC/cm–33.7×10182.2×10182.2×10182.2×10182.2×10182.02×10172.2×1018
    NV/cm–31.8×10191.8×10191.8×10191.8×10191.8×10191.1×10191.8×1019
    ND/cm–31×10171×10171.0×10130000
    NA/cm–3001.0×10171×10181×10181×10191×1019
    μn/(cm2·V–1·S–1)10010022×10–425200100
    μp/(cm2·V–1·S–1)252522×10–41008025
    下载: 导出CSV

    表 2  优化的器件光伏性能参数及参考

    Table 2.  Optimized device photovoltaic performance parameters and references.

    Thickness/nm Doping
    concentration/cm–3
    VOC/V JSC/(mA·cm–2) PCE/% FF/%
    This work ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
    70/400/350
    ETL/HTL: 2×1018/9×1021 1.36 14.12 16.87 88.04
    After thickness optimization ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
    30/500/280
    ETL/HTL: 2×1018/9×1021 1.36 15.70 18.56 87.24
    After ND(ZnOS) optimization ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
    30/500/280
    ETL/HTL: 1×1020/9×1021 1.35 15.70 18.62 87.37
    After NA(Cu2O) optimization ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
    30/500/280
    ETL/HTL: 1×1020/1×1017 1.35 19.49 22.85 86.76
    Ref.[14] ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
    70/400/350
    ETL/HTL: 2×1018/9×1021 1.39 16.04 18.18 78.34
    Other Ref.[58] ZnO/Cs2AgBi0.75Sb0.25Br6/NiO:
    70/400/350
    ETL/HTL: 5×1017/3×1018 1.23 15.57 17.13 89.39
    Other Ref.[13] NiO/Cs2AgBi0.75Sb0.25Br6/PCBM/
    SnO2: 40/500/40/6
    ETL/HTL: 1×1015/5×1017 1.14 14.9 10.01 58.70
    下载: 导出CSV
  • [1]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [2]

    Tong J, Song Z, Kim D H, Chen X, Chen C, Palmstrom A F, Ndione P F, Reese M O, Dunfield S P, Reid O G 2019 Science 364 475Google Scholar

    [3]

    Alarousu E, El-Zohry A M, Yin J, Zhumekenov A A, Yang C, Alhabshi E, Gereige I, AlSaggaf A, Malko A V, Bakr O M, Mohammed O F 2017 J. Phys. Chem. Lett. 8 4386Google Scholar

    [4]

    Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S 2015 Science 347 967Google Scholar

    [5]

    Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar

    [6]

    Zhang Z, Yang G, Zhou C, Chung C C, Hany I 2019 RSC Adv. 9 23459Google Scholar

    [7]

    Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138Google Scholar

    [8]

    Hutter E M, Gélvez-Rueda M C, Bartesaghi D, Grozema F C, Savenije T 2018 ACS Omega 3 11655Google Scholar

    [9]

    Du K Z, Meng W, Wang X, Yan Y, Mitzi D B 2017 Angew. Chem. Int. Ed. 56 8158Google Scholar

    [10]

    Pantaler M, Cho K T, Queloz V I E, Benito I G, Fettkenhauer C, Anusca I, Nazeeruddin M K, Lupascu D C, Grancini G 2018 ACS Energy Lett. 3 1781Google Scholar

    [11]

    Gao W, Ran C, Xi J, Jiao B, Zhang W, Wu M, Hou X, Wu Z 2018 Chemphyschemistry 19 1696Google Scholar

    [12]

    Liu Y, Zhang L, Wang M, Zhong Y J, Huang M R, Long Y, Zhu H W 2019 Mater. Today 28 25Google Scholar

    [13]

    Madan J, Pandey R, Sharma R 2020 Sol. Energy 197 212Google Scholar

    [14]

    Singh N, Agarwal A, Agarwal M 2021 Opt. Mater. 114 110964Google Scholar

    [15]

    Zhao P, Liu Z, Lin Z, Chen D, Su J, Zhang C, Zhang J, Chang J, Hao Y 2018 Sol. Energy 169 11Google Scholar

    [16]

    Kanoun A A, Kanoun M B, Merad A E, Goumri-Said S 2019 Sol. Energy 182 237Google Scholar

    [17]

    Jalalian D, Ghadimi A, Kiani A 2019 Eur. Phys. J. 87 10101Google Scholar

    [18]

    Rahman S I, Faisal S, Ahmed S, Dhrubo T I 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) Bengaluru, India, 30 September–2 October, 2017 pp546–550

    [19]

    Gan Y J, Bi X G, Liu Y C, Qin B Y, Li Q L, Jiang Q B, Mo P 2020 Energies 13 5907Google Scholar

    [20]

    Minemoto T, Murata M 2015 Sol. Energy Mater Sol. Cells 133 8Google Scholar

    [21]

    Ahmed S, Jannat F, Alim M A 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT) Dhaka, Bangladesh, November 21, 2020 pp297–301

    [22]

    Minemoto T, Julayhi J 2013 Curr. Appl. Phys. 13 103Google Scholar

    [23]

    Ahmed A, Riaz K, Mehmood H, Tauqeer T, Ahmad Z 2020 Opt. Mater. 105 109897Google Scholar

    [24]

    Haider S Z, Anwar H, Jamil Y, Shahid M 2020 J. Phys. Chem. Solids 136 109147Google Scholar

    [25]

    Ding C, Zhang Y H, Liu F, Kitabatake Y, Hayase S, Toyoda T, Yoshino K, Minemoto T, Katayama K, Shen Q 2018 Nano Energy 53 17Google Scholar

    [26]

    Aouaj M A, Diaz R, Belayachi A, Rueda F, Abd-Lefdil M 2009 Mater. Res. Bull. 44 1458Google Scholar

    [27]

    Way A, Luke J, Evans A D, Li Z, Kim J-S, Durrant J R, Hin Lee H K, Tsoi W C 2019 AIP Adv. 9 085220Google Scholar

    [28]

    Huang L J, Ren N F, Li B J, Zhou M 2014 Mater. Lett. 116 405Google Scholar

    [29]

    Liu J, Cao W Q, Jin H B, Yuan J, Zhang D Q, Cao M S 2015 J. Mater. Chem. C 3 4670Google Scholar

    [30]

    Pantaler M, Olthof S, Meerholz K, Lupascu D C 2019 MRS Adv. 4 3545Google Scholar

    [31]

    Dai Z, Zheng D, Chen J, Yang B 2021 Chem. Phys. Lett. 770 138440Google Scholar

    [32]

    Almosni S, Cojocaru L, Li D, Uchida S, Kubo T, Segawa H 2017 Energy Technol. 5 1767Google Scholar

    [33]

    Govindaraj G, Baskaran N, Shahi K, Monoravi P 1995 Solid State Ion 76 47Google Scholar

    [34]

    Collaboration: Authors and editors of the volumes III/17E-17F-41C. Non-Tetrahedrally Bonded Elements and Binary Compounds I 1998 1

    [35]

    Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G 2010 J. Phys. Chem. C 114 9111Google Scholar

    [36]

    Zhang Q, Dandeneau C S, Zhou X, Cao G 2009 Adv. Mater. 21 4087Google Scholar

    [37]

    Gloeckler M 2005 Ph. D. Dissertation (Fort collins, Colorado: Colorado State University

    [38]

    Eom K, Kwon U, Kalanur S S, Park H J, Seo H 2017 J. Mater. Chem. A 5 2563Google Scholar

    [39]

    Chang J H, Shen S Y, Dong C D, Shkir M, Kumar M 2022 Chemosphere 287 131960Google Scholar

    [40]

    Wang Y, Lany S, Ghanbaja J, Fagot-Revurat Y, Chen Y, Soldera F, Horwat D, Mücklich F, Pierson J 2016 Phys. Rev. B 94 245418Google Scholar

    [41]

    Wijeyasinghe N, Regoutz A, Eisner F, Du T, Tsetseris L, Lin Y H, Faber H, Pattanasattayavong P, Li J, Yan F 2017 Adv. Funct. Mater. 27 1701818Google Scholar

    [42]

    Takahashi R, Dazai T, Tsukahara Y, Borowiak A, Koinuma H 2022 J. Appl. Phys. 131 175302Google Scholar

    [43]

    Meyer E, Mutukwa D, Zingwe N, Taziwa R 2018 Metals 8 667Google Scholar

    [44]

    Rudnyi E B, Vovk O M, Kaibicheva E A, Sidorov L N 1989 J. Chem. Thermodyn. 21 247Google Scholar

    [45]

    Brandt R E, Young M, Park H H, Dameron A, Chua D, Lee Y S, Teeter G, Gordon R G, Buonassisi T 2014 Appl. Phys. Lett. 105 26Google Scholar

    [46]

    Gavrilov S, Zheleznyakova A, Dronov A, Dittrich T 2009 Physics, Chemistry And Application Of Nanostructures: Reviews and Short Notes (World Scientific) pp577–580

    [47]

    Bag A, Radhakrishnan R, Nekovei R, Jeyakumar R 2020 Sol. Energy 196 177Google Scholar

    [48]

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802 [周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 物理学报 71 208802Google Scholar

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802Google Scholar

    [49]

    Zhao P, Lin Z H, Wang J P, Yue M, Su J, Zhang J C, Chang J J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504Google Scholar

    [50]

    王家平2021 硕士学位论文 (西安: 西安电子科技大学)

    Wang J P 2021 M. S. Thesis (Xi'an: Xidian University

    [51]

    Tanaka K, Minemoto T, Takakura H J S E 2009 Sol. Energy 83 477Google Scholar

    [52]

    Saeed M A, Kim S H, Baek K, Hyun J K, Lee S Y, Shim J W 2021 Appl. Surf. Sci. 567 150852Google Scholar

    [53]

    Kim S M, Saeed M A, Kim S H, Shim J W 2020 Appl. Surf. Sci. 527 146840Google Scholar

    [54]

    许李毅飞2022 硕士学位论文 (成都: 电子科技大学)

    Xu L Y F 2022 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [55]

    Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren-Cruz S-H, Seo J, Luo J, Zakeeruddin S M, Tress W R J A E L 2018 ACS Energy Lett. 3 773Google Scholar

    [56]

    Huang X, Du J, Guo X, Lin Z, Ma J, Su J, Feng L, Zhang C, Zhang J, Chang J J S R 2020 Sol. RRL 4 1900336Google Scholar

    [57]

    Parajuli D, Shah D K, KC D, Kumar S, Park M, Pant B J E 2022 Electrochemistry 3 407Google Scholar

    [58]

    Islam M A, Abou Hashish M D, Hatta S M, Soin N B, Khan S, Amin N IOP Conference Series: Materials Science and Engineering p012005

  • [1] 姚美灵, 廖纪星, 逯好峰, 黄强, 崔艳峰, 李翔, 杨雪莹, 白杨. 影响钙钛矿/异质结叠层太阳能电池效率及稳定性的关键问题与解决方法. 物理学报, 2024, 73(8): 088801. doi: 10.7498/aps.73.20231977
    [2] 方正, 张飞, 秦校军, 杨柳, 靳永斌, 周养盈, 王兴涛, 刘云, 谢立强, 魏展画. 减小边缘复合助力28%效率的四端钙钛矿/硅叠层太阳能电池. 物理学报, 2023, 72(5): 057302. doi: 10.7498/aps.72.20222209
    [3] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉. 迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展. 物理学报, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [4] 李学锐, 林俊辉, 唐戎, 郑壮豪, 苏正华, 陈烁, 范平, 梁广兴. 新型硒化锑薄膜太阳电池背接触优化. 物理学报, 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [5] 王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟. 醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能. 物理学报, 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [6] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [7] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [8] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [9] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究. 物理学报, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [10] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [11] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [12] 陈卓, 方磊, 陈远富. 三维多孔复合碳层对电极的制备及其光伏性能研究. 物理学报, 2019, 68(1): 017802. doi: 10.7498/aps.68.20181833
    [13] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [14] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [15] 王鹏, 郭闰达, 陈宇, 岳守振, 赵毅, 刘式墉. 梯度掺杂体异质结对有机太阳能电池光电转换效率的影响. 物理学报, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [16] 汪建军, 方泽波, 冀婷, 朱燕艳, 任维义, 张志娇. Tm2O3相对于Si的能带偏移研究. 物理学报, 2012, 61(1): 017702. doi: 10.7498/aps.61.017702
    [17] 耿俊杰, 张军, 张俊, 张义, 丁建军, 孙松, 罗震林, 鲍骏, 高琛. 叠层荧光集光太阳能光伏器件的性能模拟和优化. 物理学报, 2012, 61(3): 034201. doi: 10.7498/aps.61.034201
    [18] 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权. 大面积染料敏化太阳电池的串联阻抗特性研究. 物理学报, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [19] 班大雁, 方容川, 薛剑耿, 陆尔东, 徐世宏, 徐彭寿. Si/ZnS极性界面能带偏移的同步辐射光电子能谱研究. 物理学报, 1997, 46(9): 1817-1825. doi: 10.7498/aps.46.1817
    [20] 班大雁, 方容川, 杨风源, 徐世宏, 徐彭寿, 袁诗鑫. Ge/ZnSe(100)异质结能带偏移的同步辐射光电子能谱研究. 物理学报, 1997, 46(3): 587-595. doi: 10.7498/aps.46.587
计量
  • 文章访问数:  828
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-09
  • 修回日期:  2023-10-01
  • 上网日期:  2023-12-25
  • 刊出日期:  2024-01-20

/

返回文章
返回