搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内插缝Helmholtz共振腔吸声超结构的机理分析与优化设计

贾静 肖勇 王勋年 王帅星 温激鸿

引用本文:
Citation:

内插缝Helmholtz共振腔吸声超结构的机理分析与优化设计

贾静, 肖勇, 王勋年, 王帅星, 温激鸿

Mechanism analysis and optimal design of sound-absorbing metastructure constructed by slit-embedded Helmholtz resonators

Jia Jing, Xiao Yong, Wang Xun-Nian, Wang Shuai-Xing, Wen Ji-Hong
PDF
导出引用
  • 低频噪声一直是噪声控制领域比较棘手的问题,近年来吸声超结构的蓬勃发展为低频噪声控制提供了新理念。本文提出了一种内插缝Helmholtz共振腔吸声超结构,建立了其吸声特性计算的理论解析方法,并与数值计算方法对比,验证了解析方法的有效性。随后,从吸声曲线、简化等效模型、归一化声阻抗、声压云图与质点速度分布等多角度对吸声特性及吸声机理进行了深入分析。进一步,采用差分优化算法开展了多元胞并联耦合宽带优化设计,优化后典型超结构实现了90mm厚度下在170-380Hz低频段内平均吸声系数达到0.86的优异吸声效果。最后,制备了若干样件,开展吸声测试,实验结果与理论结果吻合良好,验证了解析建模与优化设计方法的准确性。本文提出的内插缝Helmholtz共振腔吸声超结构具有结构简单、低频吸声性能好,且易于加工制造等特点,在低频噪声控制领域具有广阔的应用前景。
    Low-frequency noise has always been a thorny problem in the field of noise control. In recent years, the development of sound-absorbing metastructures has provided new ideas for low-frequency noise control. In this paper, we propose low-frequency sound-absorbing metastructures constructed by Helmholtz resonators with embedded slit. Analytical and numerical models were established to analyze the sound absorption performance and mechanism of the proposed sound-absorbing metastructure, and optimization design was conducted to achieve low-frequency wideband absorption performance. The analytical modeling method and the performance of the proposed sound-absorbing metastructure were also experimentally verified. The main conclusions are summarized as follows:
    1) Based on the use of transfer matrix method and finite element method, analytical and numerical models for calculation of sound absorption coefficient were established. It was shown that analytical predictions are in good agreement with numerical calculations. It was demonstrated that a typical design of a single-cell metastructure with 30mm thickness can achieve a sound absorption coefficient of 0.88 at 404 Hz. Typical designs of two-cell and the four-cell parallel structures (with 50 mm thickness) can achieve two and four near-perfect low-frequency sound absorption peaks within the frequency band of 200-400 Hz, respectively.
    2) The low-frequency sound absorption mechanisms of the proposed metastructure were explained from four aspects: simplified equivalent model parameters, normalized acoustic impedance, complex-plane zero/pole distribution, sound pressure cloud image and particle velocity field distribution. It was demonstrated that the main sound absorption mechanism is associated with the thermal viscous loss of sound waves caused the inner wall of embedded slit.
    3) Optimization design for broadband low-frequency absorption performance was carried out by using differential evolution optimization algorithm. A parallel-multi-cell coupled metastructure with multiple perfect sound absorption peaks below 500Hz was optimized. Under the condition of thickness 90mm, the sound absorption coefficient curve of an optimized metastructure exhibited 8 near-perfect sound absorption peaks and an average sound absorption coefficient of 0.86 within the frequency range of 170-380 Hz.
    4) Experimental samples were fabricated to carry out sound absorption tests. Experimental results were basically consistent with the analytical predictions. Mutual verification of analytical model, numerical calculation and experimental measurements was completed.
    To sum up, the sound-absorbing metastructures proposed in this paper have outstanding sound absorption performance at low frequencies with sub-wavelength thickness. We demonstrated they are suitable for low frequency broadband sound absorption below 500 Hz. Thanks to their thin thickness and relatively simple construction, they have broad application prospects in practical noise control engineering.
  • [1]

    Champoux Y, Allard J F 1991 J. Appl. Phys. 70 1975

    [2]

    Panneton R 2007 The Journal of the Acoustical Society of America 122 217

    [3]

    Trompette N, Barbry J, Sgard F, Nelisse H 2009 The Journal of the Acoustical Society of America 125 31

    [4]

    Climente A, Torrent D, Sánchez-Dehesa J 2012 Appl. Phys. Lett. 100 144103

    [5]

    Ma G C, Sheng P 2016 Science Advances 2 1501595

    [6]

    Xiao Y, Wang Y, Zhao H G, Yu D L, Wen J H 2023 Journal of Mechanical Engineering 59 277 (in Chinese) [肖勇,王洋,赵宏刚,郁殿龙,温激鸿 2023 机械工程学报 59 277]

    [7]

    Cai X B, Guo Q Q, Hu G K, Yang J 2014 Appl. Phys. Lett. 105 121901

    [8]

    Wang Y, Zhao H G, Yang H B, Zhong J, Zhao D, Lu Z L, Wen J H 2018 J. Appl. Phys. 123 185109

    [9]

    Wu F, Xiao Y, Yu D, Zhao H, Wang Y, Wen J 2019 Appl. Phys. Lett. 114 151901

    [10]

    Wu F, Huang W, Chen W Y, Xiao Y, Yu D L, Wen J H 2020 Acta Phys. Sin. 69 134303 (in Chinese) [吴飞,黄威,陈文渊,肖勇,郁殿龙,温激鸿 2020 物理学报 69 134303]

    [11]

    Zhao H G, Wang Y, Yu D L, Yang H B, Zhong J, Wu F, Wen J H 2020 Compos. Struct. 239 111978

    [12]

    Jin Y B, Yang Y L, Wen Z H, He L S, Cang Y, Yang B, Djafari-Rouhani B, Li Y, Li Y 2022 Int. J. Mech. Sci. 226 107396

    [13]

    Liu C R, Yang Z R, Liu X L, Wu J H, Ma F Y 2023 APL Materials 11 101122

    [14]

    Bai Y, Zhang Z F, Yang H B, Cai L, Yu D L 2023 Acta Phys. Sin. 72 54301 (in Chinese) [白宇,张振方,杨海滨,蔡力,郁殿龙 2020 物理学报 72 054301]

    [15]

    Liu J W, Yu D L, Yang H B, Shen H J, Wen J H 2020 Chinese Phys. Lett. 37 34301

    [16]

    Zhou Z L, Huang S B, Li D T, Zhu J, Li Y 2022 National Science Review 9 171

    [17]

    Almeida G D N, Vergara E F, Barbosa L R, Lenzi A, Birch R S 2021 Appl. Acoust. 183 108312

    [18]

    Wu F, Ju Z G, Hu M, Zhang X, Li D, Liu K L 2023 J. Phys. D: Appl. Phys. 56 45401

    [19]

    Ma G C, Yang M, Xiao S W, Yang Z Y, Sheng P 2014 Nat. Mater. 13 873

    [20]

    Ge H, Yang M, Ma C, Lu M H, Chen Y F, Fang N, Sheng P 2018 National Science Review 5 159

    [21]

    Cummer S A, Christensen J, Alù A 2016 Nature Reviews Materials 1 16001

    [22]

    Stinson M R 1991 The Journal of the Acoustical Society of America 89 550

    [23]

    Verdière K, Panneton R, Elkoun S D, Dupont T, Leclaire P 2013 The Journal of the Acoustical Society of America 134 4648

    [24]

    Guo J W, Zhang X, Fang Y, Jiang Z Y 2021 Compos. Struct. 260 113538

    [25]

    Tam C K W, Ju H, Jones M G, Watson W R, Parrott T L 2005 J. Sound Vib. 284 947

    [26]

    Zieliński T G, Chevillotte F, Deckers E 2019 Appl. Acoust. 146 261

    [27]

    Du G H, Zhu Z M, Gong X F 2012 Acoustics Foundation (Nanjing: Nanjing University Press) p159 (in Chinese) [杜功焕,朱哲民,龚秀芬 2012 声学基础(南京:南京大学出版社)第159页]

    [28]

    Romero-García V, Theocharis G, Richoux O, Merkel A, Tournat V, Pagneux V 2016 Science Reports 6 19519

    [29]

    Lee F C, Chen W H 2001 J. Sound Vib. 248 621

    [30]

    Liu J, Herrin D W 2010 Appl. Acoust. 71 120

    [31]

    Ruiz H, Claeys C C, Deckers E, Desmet W 2016 Mech. Syst. Signal Pr. 70 904

    [32]

    Romero-García V, Sánchez-Pérez J V, Garcia-Raffi L M 2011 J. Appl. Phys. 110 14904

    [33]

    Qamoshi K, Rasuli R 2016 Applied Physics A 122 788

    [34]

    Storn R, Price K 1997 J. Global Optim. 11 341

  • [1] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, doi: 10.7498/aps.72.20230471
    [2] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, doi: 10.7498/aps.72.20222011
    [3] 王蕾, 马玺越, 陈克安, 刘韬. 自由场中大尺寸有源微穿孔板吸声器的低频吸声性能. 物理学报, doi: 10.7498/aps.72.20222151
    [4] 李婷, 吴丰民, 张同涛, 王军军, 杨彬, 章东. 基于嵌入式粗糙颈亥姆霍兹共振器的低频宽带通风消声器. 物理学报, doi: 10.7498/aps.72.20231047
    [5] 施全权, 杨玉真, 赵准, 安秉文, 田朋溢, 蒋成成, 邓科, 贾晗, 杨军. 基于二阶共鸣器单元的宽频消声器研究与设计. 物理学报, doi: 10.7498/aps.71.20221377
    [6] 吴飞, 黄威, 陈文渊, 肖勇, 郁殿龙, 温激鸿. 基于微孔板与折曲通道的亚波长宽带吸声结构设计. 物理学报, doi: 10.7498/aps.69.20200368
    [7] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, doi: 10.7498/aps.68.20181908
    [8] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. 薄膜与Helmholtz腔耦合结构低频带隙. 物理学报, doi: 10.7498/aps.68.20190673
    [9] 张丰辉, 唐宇帆, 辛锋先, 卢天健. 微穿孔蜂窝-波纹复合声学超材料吸声行为. 物理学报, doi: 10.7498/aps.67.20181368
    [10] 高东宝, 刘选俊, 田章福, 周泽民, 曾新吾, 韩开锋. 一种基于二维Helmholtz腔阵列的低频宽带隔声结构实验研究. 物理学报, doi: 10.7498/aps.66.014307
    [11] 姜久龙, 姚宏, 杜军, 赵静波, 邓涛. 双开口Helmholtz局域共振周期结构低频带隙特性研究. 物理学报, doi: 10.7498/aps.66.064301
    [12] 吕林梅, 温激鸿, 赵宏刚, 温熙森. 黏弹性材料的动态力学特性及其对覆盖层吸声性能的影响. 物理学报, doi: 10.7498/aps.63.154301
    [13] 赵宏刚, 温激鸿, 杨海滨, 吕林梅, 温熙森. 一种含柱形空腔结构橡胶层的吸声机理及优化. 物理学报, doi: 10.7498/aps.63.134303
    [14] 梁国龙, 庞福滨, 张光普. 吸声材料对水下小平台上矢量传感器声学特性的影响研究. 物理学报, doi: 10.7498/aps.63.034303
    [15] 于利刚, 李朝晖, 王仁乾, 马黎黎. 含玻璃微球的黏弹性复合材料覆盖层的水下吸声性能分析. 物理学报, doi: 10.7498/aps.62.064301
    [16] 杨海滨, 李岳, 赵宏刚, 温激鸿, 温熙森. 一种含圆柱形谐振散射体的黏弹材料低频吸声机理研究. 物理学报, doi: 10.7498/aps.62.154301
    [17] 于利刚, 李朝晖, 马黎黎. 0-3型压电复合材料覆盖层水下吸声性能的理论研究. 物理学报, doi: 10.7498/aps.61.024301
    [18] 吕林梅, 温激鸿, 赵宏刚, 孟浩, 温熙森. 内嵌不同形状散射子的局域共振型黏弹性覆盖层低频吸声性能研究. 物理学报, doi: 10.7498/aps.61.214302
    [19] 孙广荣, 魏荣爵. 甘蔗纤维板穿孔吸声的初步研究. 物理学报, doi: 10.7498/aps.19.151
    [20] 魏荣爵, 余崇智. 国产吸声材料的吸声系数测定的初步报告. 物理学报, doi: 10.7498/aps.13.365
计量
  • 文章访问数:  154
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-09

/

返回文章
返回