搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z箍缩内爆的MARED程序数值模拟分析

丁宁 邬吉明 戴自换 张扬 尹丽 姚彦忠 孙顺凯 宁成 束小建

Z箍缩内爆的MARED程序数值模拟分析

丁宁, 邬吉明, 戴自换, 张扬, 尹丽, 姚彦忠, 孙顺凯, 宁成, 束小建
PDF
导出引用
导出核心图
  • MARED程序是模拟Z箍缩内爆过程的二维三温辐射磁流体力学程序,它适用于不同装置条件和不同负载参数.利用MARED程序对Z箍缩内爆进行模拟,结合丝阵Z箍缩实验分析表明:相同负载质量条件下,钨丝阵内爆产生的X射线辐射功率远大于铝丝阵产生的X射线功率;相同负载电流条件下,负载质量越大,计算得到的X射线功率越低;X射线功率随着负载电流增加而增加.MARED程序能够较好地反映Z箍缩内爆动力学过程,特别是不稳定性发展的二维图像,能够给出与不稳定性简化模型的理论分析及实验结果定性一致的演化规律.MARED程序模拟丝阵填充泡沫形成辐射场的初步计算得到了与Sandia实验室模拟Z装置上丝阵填充泡沫定性一致的结果.
    • 基金项目: 国家自然科学基金(批准号:10975022,10775021,10575014)、国家自然科学基金重点项目(批准号: 10635050)和国防基础科学研究计划(批准号:A1520070074)资助的课题.
    [1]

    Deeney C, Douglas M R, Spielman R B, Nash T J, Peterson D L, Eplattenier P L, Chandler G A, Seamen J F, Struve K W 1998 Phys. Rev. Lett. 81 4883

    [2]

    Sandford T W L, Allshouse G O, Marder B M, Nash T J, Mock R C, Spielman R B, Seamen J F, McGurn J S, Jobe D, Gilliland T L, Vargas M, Struve K W, Stygar W A, Douglas M R, Matzen M K 1996 Phys. Rev. Lett. 77 5063

    [3]

    Deeney C, Nash T J, Spielman R B, Seaman J F, Chandler G C, Struve K W, Porter J L, Stygar W A, McGurn J S, Jobe D O, Gilliland T L, Torres J A, Vargas M F, Ruggles L E, Breeze S, Mock R C, Douglas M R, Feh D L, McDanie D H, Matzen M K, Peterson D L, Matuska W, Roderick N F, MacFarlane J J 1997 Phys. Rev. E 56 5945

    [4]

    Peterson D L, Bowers R L, Brownell J H, Greene A E, McLenithan K D, Oliphant T A, Roderick N F, Scannapieco A J 1996 Phys. Plasmas 3 368

    [5]

    Peterson D L, Bowers R L, McLenithan K D, Deeney C, Chandler G A, Spielman R B, Matzen M K, Roderick N F 1998 Phys. Plasmas 5 3302

    [6]

    Chittenden J P, Lebedev S V, Bland S N, Beg F N, Haines M G 2001 Phys. Plasmas 8 2305

    [7]

    Chittenden J P, Lebedev S V, Jennings C A, Bland S N, Ciardi A 2004 Plasma Phys. Contr. Fusion 46 B457

    [8]

    Ning C, Yang Z H, Ding N 2003 Acta Phys. Sin. 52 1650 (in Chinese) [宁 成、杨震华、丁 宁 2003 物理学报 52 1650]

    [9]

    Ding N, Yang Z H, Ning C 2004 Acta Phys. Sin. 53 808 (in Chinese) [丁 宁、杨震华、宁 成 2004 物理学报 53 808]

    [10]

    Duan Y Y, Guo Y H, Wang W S, Qiu A C 2004 Acta Phys. Sin. 53 2654 (in Chinese) [段耀勇、郭永辉、王文生、邱爱慈 2004 物理学报 53 2654]

    [11]

    Ning C, Yang Z H, Ding N 2002 High Power Laser and Particle Beams 14 877 (in Chinese) [宁 成、杨震华、丁 宁 2002 强激光与粒子束 14 877]

    [12]

    Wang G H, Hu X J, Sun C W 2004 Chin. J. High Pres. Phys. 18 364 (in Chinese) [王刚华、胡熙静、孙承纬 2004 高压物理学报 18 364]

    [13]

    Ding N, Zhang Y, Liu Q, Xiao D L, Shu X J, Ning C 2009 Acta Phys. Sin. 58 1083(in Chinese) [丁 宁、张 扬、刘 全、肖德龙、束小建、宁 成 2009 物理学报 58 1083]

    [14]

    Ding N, Wu J M, Yang Z H, Fu S W, Ning C, Liu Q, Shu X J, Zhang Y, Dai Z H 2008 High Power Laser and Particle Beams 20 212 (in Chinese) [丁 宁、邬吉明、杨震华、符尚武、宁 成、刘 全、束小建、张 扬、戴自换 2008 强激光与粒子束 20 212]

    [15]

    Sanford T W L, Olson R E, Mock R C, Chandler G A, Leeper R J, Nash T J, Ruggles L E, Simpson W W, Struve K W, Peterson D L, Bowers R L, Matuska W 2000 Phys. Plasmas 7 4669

    [16]

    Fu S W, Shen L J, Huang S K 1998 High Technol. Lett. 8 53 (in Chinese) [符尚武、沈隆钧、黄书科 1998 高技术通讯 8 53]

    [17]

    Thornhill J W, Whitney K G, Deeney C, LePell P D 1994 Phys. Plasmas 1 321

    [18]

    Lee K T, Kim S H, Kim D, Lee T N 1996 Phys. Plasmas 3 1340

    [19]

    Deeney C, Coverdale C A, Douglas M R 2001 Laser and Particle Beams 19 497

    [20]

    Sanford T W L, Mock R C, Spielman R B, Peterson D L, Mosher D, Roderick N F 1998 Phys. Plasmas 5 3737

    [21]

    Douglas M R, Deeney C, Roderick N F 1998 Phys. Plasmas 5 4183

    [22]

    Haines M G 1998 IEEE Trans. Plasma Sci. 26 1275

    [23]

    Lebedev S V, Beg F N, Bland S N, Chittenden J P, Dangor A E, Haines M G, Kwek K H, Pikuz S A, Shelkovenko T A 2001 Phys. Plasmas 8 3734

    [24]

    Matzen M K 1997 Phys. Plasmas 4 1519

    [25]

    Leeper R J, Alberts T E, Asay J R, Baca P M, Baker K L, Breeze S P, Chandler G A, Cook D L, Cooper G W, Deeney C, Derzon M S, Douglas M R, Fehl D L, Gilliland T, Hebron D E, Hurst M J, Jobe D O, Kellogg J W, Lash J S, Lazier S E, Matzen M K, McDaniel D H, McGurn J S, Mehlhorn T A, Moats A R, Mock R C, Muron D J, Nash T J, Olson R E, Porter J L, Quintenz J P, Reyes P V, Ruggles L E, Ruiz C L, Sanford T W L, Schmidlapp F A, Seamen J F, Spielman R B, Stark M A, Struve K W, Stygar W A, Tibbetts-Russell D R, Torres J A, Vargas M, Wagoner T C, Wakefield C, Hammer J H, Ryutov D D, Tabak M, Wilks S C, Bowers R L, McLenithan K D, Peterson D L 1999 Nucl. Fusion 39 1283

    [26]

    Hammer J H, Tabak M, Wilks S C, Lind J D, Bailey D S, Rambo P W, Toor A, Zimmerman G B, Porter J L Jr 1999 Phys. Plasmas 6 2129

    [27]

    Haines M G, Sanford T W L, Smirnov V P 2005 Plasma Phys. Contr. Fusion 47 B1

    [28]

    Cuneo M E, Sinars D B, Waisman E M, Bliss D E, Stygar W A, Vesey R A, Lemke R W, Smith I C, Rambo P K, Porter J L, Chandler G A, Nash T J, Mazarakis M G, Adams R G, Yu E P, Struve K W, Mehlhorn T A, Lebedev S V, Chittenden J P, Jennings C A 2006 Phys. Plasmas 13 056318

  • [1]

    Deeney C, Douglas M R, Spielman R B, Nash T J, Peterson D L, Eplattenier P L, Chandler G A, Seamen J F, Struve K W 1998 Phys. Rev. Lett. 81 4883

    [2]

    Sandford T W L, Allshouse G O, Marder B M, Nash T J, Mock R C, Spielman R B, Seamen J F, McGurn J S, Jobe D, Gilliland T L, Vargas M, Struve K W, Stygar W A, Douglas M R, Matzen M K 1996 Phys. Rev. Lett. 77 5063

    [3]

    Deeney C, Nash T J, Spielman R B, Seaman J F, Chandler G C, Struve K W, Porter J L, Stygar W A, McGurn J S, Jobe D O, Gilliland T L, Torres J A, Vargas M F, Ruggles L E, Breeze S, Mock R C, Douglas M R, Feh D L, McDanie D H, Matzen M K, Peterson D L, Matuska W, Roderick N F, MacFarlane J J 1997 Phys. Rev. E 56 5945

    [4]

    Peterson D L, Bowers R L, Brownell J H, Greene A E, McLenithan K D, Oliphant T A, Roderick N F, Scannapieco A J 1996 Phys. Plasmas 3 368

    [5]

    Peterson D L, Bowers R L, McLenithan K D, Deeney C, Chandler G A, Spielman R B, Matzen M K, Roderick N F 1998 Phys. Plasmas 5 3302

    [6]

    Chittenden J P, Lebedev S V, Bland S N, Beg F N, Haines M G 2001 Phys. Plasmas 8 2305

    [7]

    Chittenden J P, Lebedev S V, Jennings C A, Bland S N, Ciardi A 2004 Plasma Phys. Contr. Fusion 46 B457

    [8]

    Ning C, Yang Z H, Ding N 2003 Acta Phys. Sin. 52 1650 (in Chinese) [宁 成、杨震华、丁 宁 2003 物理学报 52 1650]

    [9]

    Ding N, Yang Z H, Ning C 2004 Acta Phys. Sin. 53 808 (in Chinese) [丁 宁、杨震华、宁 成 2004 物理学报 53 808]

    [10]

    Duan Y Y, Guo Y H, Wang W S, Qiu A C 2004 Acta Phys. Sin. 53 2654 (in Chinese) [段耀勇、郭永辉、王文生、邱爱慈 2004 物理学报 53 2654]

    [11]

    Ning C, Yang Z H, Ding N 2002 High Power Laser and Particle Beams 14 877 (in Chinese) [宁 成、杨震华、丁 宁 2002 强激光与粒子束 14 877]

    [12]

    Wang G H, Hu X J, Sun C W 2004 Chin. J. High Pres. Phys. 18 364 (in Chinese) [王刚华、胡熙静、孙承纬 2004 高压物理学报 18 364]

    [13]

    Ding N, Zhang Y, Liu Q, Xiao D L, Shu X J, Ning C 2009 Acta Phys. Sin. 58 1083(in Chinese) [丁 宁、张 扬、刘 全、肖德龙、束小建、宁 成 2009 物理学报 58 1083]

    [14]

    Ding N, Wu J M, Yang Z H, Fu S W, Ning C, Liu Q, Shu X J, Zhang Y, Dai Z H 2008 High Power Laser and Particle Beams 20 212 (in Chinese) [丁 宁、邬吉明、杨震华、符尚武、宁 成、刘 全、束小建、张 扬、戴自换 2008 强激光与粒子束 20 212]

    [15]

    Sanford T W L, Olson R E, Mock R C, Chandler G A, Leeper R J, Nash T J, Ruggles L E, Simpson W W, Struve K W, Peterson D L, Bowers R L, Matuska W 2000 Phys. Plasmas 7 4669

    [16]

    Fu S W, Shen L J, Huang S K 1998 High Technol. Lett. 8 53 (in Chinese) [符尚武、沈隆钧、黄书科 1998 高技术通讯 8 53]

    [17]

    Thornhill J W, Whitney K G, Deeney C, LePell P D 1994 Phys. Plasmas 1 321

    [18]

    Lee K T, Kim S H, Kim D, Lee T N 1996 Phys. Plasmas 3 1340

    [19]

    Deeney C, Coverdale C A, Douglas M R 2001 Laser and Particle Beams 19 497

    [20]

    Sanford T W L, Mock R C, Spielman R B, Peterson D L, Mosher D, Roderick N F 1998 Phys. Plasmas 5 3737

    [21]

    Douglas M R, Deeney C, Roderick N F 1998 Phys. Plasmas 5 4183

    [22]

    Haines M G 1998 IEEE Trans. Plasma Sci. 26 1275

    [23]

    Lebedev S V, Beg F N, Bland S N, Chittenden J P, Dangor A E, Haines M G, Kwek K H, Pikuz S A, Shelkovenko T A 2001 Phys. Plasmas 8 3734

    [24]

    Matzen M K 1997 Phys. Plasmas 4 1519

    [25]

    Leeper R J, Alberts T E, Asay J R, Baca P M, Baker K L, Breeze S P, Chandler G A, Cook D L, Cooper G W, Deeney C, Derzon M S, Douglas M R, Fehl D L, Gilliland T, Hebron D E, Hurst M J, Jobe D O, Kellogg J W, Lash J S, Lazier S E, Matzen M K, McDaniel D H, McGurn J S, Mehlhorn T A, Moats A R, Mock R C, Muron D J, Nash T J, Olson R E, Porter J L, Quintenz J P, Reyes P V, Ruggles L E, Ruiz C L, Sanford T W L, Schmidlapp F A, Seamen J F, Spielman R B, Stark M A, Struve K W, Stygar W A, Tibbetts-Russell D R, Torres J A, Vargas M, Wagoner T C, Wakefield C, Hammer J H, Ryutov D D, Tabak M, Wilks S C, Bowers R L, McLenithan K D, Peterson D L 1999 Nucl. Fusion 39 1283

    [26]

    Hammer J H, Tabak M, Wilks S C, Lind J D, Bailey D S, Rambo P W, Toor A, Zimmerman G B, Porter J L Jr 1999 Phys. Plasmas 6 2129

    [27]

    Haines M G, Sanford T W L, Smirnov V P 2005 Plasma Phys. Contr. Fusion 47 B1

    [28]

    Cuneo M E, Sinars D B, Waisman E M, Bliss D E, Stygar W A, Vesey R A, Lemke R W, Smith I C, Rambo P K, Porter J L, Chandler G A, Nash T J, Mazarakis M G, Adams R G, Yu E P, Struve K W, Mehlhorn T A, Lebedev S V, Chittenden J P, Jennings C A 2006 Phys. Plasmas 13 056318

  • [1] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [2] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [3] 杨进, 陈俊, 王福地, 李颖颖, 吕波, 向东, 尹相辉, 张洪明, 符佳, 刘海庆, 臧庆, 储宇奇, 刘建文, 王勋禺, 宾斌, 何梁, 万顺宽, 龚学余, 叶民友. 东方超环上低杂波驱动等离子体环向旋转实验研究. 物理学报, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [4] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [5] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191591
    [6] 王琳, 魏来, 王正汹. 垂直磁重联平面的驱动流对磁岛链影响的模拟. 物理学报, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [7] 蒋涛, 任金莲, 蒋戎戎, 陆伟刚. 基于局部加密纯无网格法非线性Cahn-Hilliard方程的模拟. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191829
    [8] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [9] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [10] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [11] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200025
    [12] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [13] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3986
  • PDF下载量:  919
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-01
  • 修回日期:  2010-06-04
  • 刊出日期:  2010-12-15

Z箍缩内爆的MARED程序数值模拟分析

  • 1. 北京应用物理与计算数学研究所,北京 100094
    基金项目: 

    国家自然科学基金(批准号:10975022,10775021,10575014)、国家自然科学基金重点项目(批准号: 10635050)和国防基础科学研究计划(批准号:A1520070074)资助的课题.

摘要: MARED程序是模拟Z箍缩内爆过程的二维三温辐射磁流体力学程序,它适用于不同装置条件和不同负载参数.利用MARED程序对Z箍缩内爆进行模拟,结合丝阵Z箍缩实验分析表明:相同负载质量条件下,钨丝阵内爆产生的X射线辐射功率远大于铝丝阵产生的X射线功率;相同负载电流条件下,负载质量越大,计算得到的X射线功率越低;X射线功率随着负载电流增加而增加.MARED程序能够较好地反映Z箍缩内爆动力学过程,特别是不稳定性发展的二维图像,能够给出与不稳定性简化模型的理论分析及实验结果定性一致的演化规律.MARED程序模拟丝阵填充泡沫形成辐射场的初步计算得到了与Sandia实验室模拟Z装置上丝阵填充泡沫定性一致的结果.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回