搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

组合材料方法研究膜厚对Ni/SiC电极接触性质的影响

刘庆峰 刘茜 张静玉 陈之战 陈义 施尔畏 黄维

组合材料方法研究膜厚对Ni/SiC电极接触性质的影响

刘庆峰, 刘茜, 张静玉, 陈之战, 陈义, 施尔畏, 黄维
PDF
导出引用
导出核心图
  • 采用组合材料方法研究了金属Ni膜厚对Ni/SiC接触性质的影响.16个膜厚均为18 nm的Ni/SiC电极具有较为一致的肖特基接触性质;膜厚从10 nm增加到160 nm,肖特基接触的电流-电压(I-V)曲线随膜厚发生显著变化.分析表明这种变化源于膜厚对理想因子n和有效势垒高度ФB的影响.1000℃快速退火后,这些肖特基接触都转变为欧姆接触,Ni2Si是主要的生成物.I-V曲线测
    • 基金项目: 国家高技术研究发展计划(批准号:2006AA03A146),中国科学院知识创新项目(批准号:KGCX2-YW-206);上海市科学技术委员会(批准号:09DZ1141400,09520714900)和高性能陶瓷和超微结构国家重点实验室开放基金(批准号:SKL200810SIC)资助的课题.
    [1]

    [1]Xiang X D,Sun X D,Briceno G,Lou Y L,Wang K A,Chang H Y,Wallacefreedman W G,Chen S W,Schultz P G 1995 Science 268 1738

    [2]

    [2]Xiang X D 1999 Annu. Rev. Mater. Sci. 29 149

    [3]

    [3]Danielson E,Golden J H,McFarland E W,Reaves C M,Weinberg W H,Wu X D 1997 Nature 389 944

    [4]

    [4]van Dover R B,Schneemeyer L D,Fleming R M 1998 Nature 392 162

    [5]

    [5]Li J W,Duewer F,Gao C,Chang H Y,Xiang X D,Lu Y L 2000 Appl. Phys. Lett. 76 769

    [6]

    [6]Yoo Y K,Duewer F,Yang H T,Yi D,Li J W,Xiang X D 2000 Nature 406 704

    [7]

    [7]Treu M,Rupp R,Blaschitz P,Hilsenbeck J 2006 Superlattices and Microstructures 40 380

    [8]

    [8]Anderson T,Barrett D,Chen J,Emorhokpor E,Gupta A,Hopkins R,Souzis A,Tanner C,Yoganathan M,Zwieback I,Choyke W J,Devaty R P,Yan F 2005 Silicon Carbide and Related Materials 483 9

    [9]

    [9]Shiomi H,Kinoshita H,Furusho T,Hayashi T,Tajima M,Higashi E 2006 J. Cryst. Growth 292 188

    [10]

    ]Wang S G,Zhang Y M 2003 Chin. Phys. 12 89

    [11]

    ]Lu H L,Zhang Y M,Zhang Y M,Che Y 2008 Chin. Phys. B 17 1410

    [12]

    ]Guo H,Zhang Y M,Qiao D Y,Sun L,Zhang Y M 2007 Chin. Phys. 16 1753

    [13]

    ]Lee J W,Angadi B,Park H C,Park D H,Choi J W,Choi W K,Kim T W 2007 J. Electrochem. Soc. 154 849

    [14]

    ]Basak D,Mahanty S 2003 Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 98 177

    [15]

    ]Park J H,Holloway P H 2005 J. Vac. Sci. Technol. B 23 2530

    [16]

    ]Crofton J,Porter L M,Williams J R 1997 Phys. Status Solidi B-Basic Res. 202 581

    [17]

    ]Roccaforte F,La Via F,Raineri V,Calcagno L,Musumeci P 2001 Appl. Surf. Sci. 184 295

    [18]

    ]Ervin M H,Jones K A,Lee U,Wood M C 2006 J. Vac. Sci. Technol. B 24 1185

    [19]

    ]Nikitina I P,Vassilevski K V,Wright N G,Horsfall A B,O'Neill A G,Johnson C M 2005 J. Appl. Phys. 97 083709

    [20]

    ]Park J H,Holloway P H 2005 J. Vac. Sci. Technol. B 23 486

    [21]

    ]Nikitina I P,Vassilevski K V,Horsfall A B,Wright N G,O′Neill A G,Johnson C M,Yamamoto T,Malhan R K 2006 Semicond. Sci. Technol. 21 898

    [22]

    ]Huang W,Chen Z Z,Chen B Y,Zhang J Y,Yan C F,Xiao B,Shi E W 2009 Acta Phys. Sin. 58 3443 (in Chinese) [黄维、陈之战、陈博源、张静玉、严成锋、肖兵、施尔畏 2009 物理学报 58 3443]

    [23]

    ]Okuno K,Ito T,Iwami M,Hiraki A 1980 Solid State Commun. 34 493

    [24]

    ]Masri P,Langlade P 1981 J. Phys. C-Solid State Phys.14 5379

    [25]

    ]Biber M,Gullu O,Forment S,Van Meirhaeghe R L,Turut A 2006 Semicond. Sci. Technol. 21 1

    [26]

    ]Gullu O,Biber M,Van Meirhaeghe R L,Turut A 2008 Thin Solid Films 516 7851

    [27]

    ]Liu Z L,Shang Y C,Wang S R 2003 Acta Phys. Sin. 52 211 (in Chinese) [刘忠立、尚也淳、王姝睿 2003 物理学报 52 211]

    [28]

    ]Rhoderick E H,Williams R H 1978 Metal-Semiconductor Contacts (Oxford:Clarendon press) p47

    [29]

    ]Roccaforte F,La Via F,Raineri V,Pierobon R,Zanoni E 2003 J. Appl. Phys. 93 9137[30]Im H J,Ding Y,Pelz J P,Choyke W J 2001 Phys. Rev. B 64 075310

  • [1]

    [1]Xiang X D,Sun X D,Briceno G,Lou Y L,Wang K A,Chang H Y,Wallacefreedman W G,Chen S W,Schultz P G 1995 Science 268 1738

    [2]

    [2]Xiang X D 1999 Annu. Rev. Mater. Sci. 29 149

    [3]

    [3]Danielson E,Golden J H,McFarland E W,Reaves C M,Weinberg W H,Wu X D 1997 Nature 389 944

    [4]

    [4]van Dover R B,Schneemeyer L D,Fleming R M 1998 Nature 392 162

    [5]

    [5]Li J W,Duewer F,Gao C,Chang H Y,Xiang X D,Lu Y L 2000 Appl. Phys. Lett. 76 769

    [6]

    [6]Yoo Y K,Duewer F,Yang H T,Yi D,Li J W,Xiang X D 2000 Nature 406 704

    [7]

    [7]Treu M,Rupp R,Blaschitz P,Hilsenbeck J 2006 Superlattices and Microstructures 40 380

    [8]

    [8]Anderson T,Barrett D,Chen J,Emorhokpor E,Gupta A,Hopkins R,Souzis A,Tanner C,Yoganathan M,Zwieback I,Choyke W J,Devaty R P,Yan F 2005 Silicon Carbide and Related Materials 483 9

    [9]

    [9]Shiomi H,Kinoshita H,Furusho T,Hayashi T,Tajima M,Higashi E 2006 J. Cryst. Growth 292 188

    [10]

    ]Wang S G,Zhang Y M 2003 Chin. Phys. 12 89

    [11]

    ]Lu H L,Zhang Y M,Zhang Y M,Che Y 2008 Chin. Phys. B 17 1410

    [12]

    ]Guo H,Zhang Y M,Qiao D Y,Sun L,Zhang Y M 2007 Chin. Phys. 16 1753

    [13]

    ]Lee J W,Angadi B,Park H C,Park D H,Choi J W,Choi W K,Kim T W 2007 J. Electrochem. Soc. 154 849

    [14]

    ]Basak D,Mahanty S 2003 Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 98 177

    [15]

    ]Park J H,Holloway P H 2005 J. Vac. Sci. Technol. B 23 2530

    [16]

    ]Crofton J,Porter L M,Williams J R 1997 Phys. Status Solidi B-Basic Res. 202 581

    [17]

    ]Roccaforte F,La Via F,Raineri V,Calcagno L,Musumeci P 2001 Appl. Surf. Sci. 184 295

    [18]

    ]Ervin M H,Jones K A,Lee U,Wood M C 2006 J. Vac. Sci. Technol. B 24 1185

    [19]

    ]Nikitina I P,Vassilevski K V,Wright N G,Horsfall A B,O'Neill A G,Johnson C M 2005 J. Appl. Phys. 97 083709

    [20]

    ]Park J H,Holloway P H 2005 J. Vac. Sci. Technol. B 23 486

    [21]

    ]Nikitina I P,Vassilevski K V,Horsfall A B,Wright N G,O′Neill A G,Johnson C M,Yamamoto T,Malhan R K 2006 Semicond. Sci. Technol. 21 898

    [22]

    ]Huang W,Chen Z Z,Chen B Y,Zhang J Y,Yan C F,Xiao B,Shi E W 2009 Acta Phys. Sin. 58 3443 (in Chinese) [黄维、陈之战、陈博源、张静玉、严成锋、肖兵、施尔畏 2009 物理学报 58 3443]

    [23]

    ]Okuno K,Ito T,Iwami M,Hiraki A 1980 Solid State Commun. 34 493

    [24]

    ]Masri P,Langlade P 1981 J. Phys. C-Solid State Phys.14 5379

    [25]

    ]Biber M,Gullu O,Forment S,Van Meirhaeghe R L,Turut A 2006 Semicond. Sci. Technol. 21 1

    [26]

    ]Gullu O,Biber M,Van Meirhaeghe R L,Turut A 2008 Thin Solid Films 516 7851

    [27]

    ]Liu Z L,Shang Y C,Wang S R 2003 Acta Phys. Sin. 52 211 (in Chinese) [刘忠立、尚也淳、王姝睿 2003 物理学报 52 211]

    [28]

    ]Rhoderick E H,Williams R H 1978 Metal-Semiconductor Contacts (Oxford:Clarendon press) p47

    [29]

    ]Roccaforte F,La Via F,Raineri V,Pierobon R,Zanoni E 2003 J. Appl. Phys. 93 9137[30]Im H J,Ding Y,Pelz J P,Choyke W J 2001 Phys. Rev. B 64 075310

  • [1] 王 源, 张义门, 张玉明, 汤晓燕. 6H-SiC肖特基源漏MOSFET的模拟仿真研究. 物理学报, 2003, 52(10): 2553-2557. doi: 10.7498/aps.52.2553
    [2] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压. 物理学报, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [3] 鲁媛媛, 鹿桂花, 周恒为, 黄以能. 锂辉石/碳化硅复相陶瓷材料的制备与性能. 物理学报, 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [4] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度. 物理学报, 2019, 68(15): 158101. doi: 10.7498/aps.68.20190350
    [5] 邱冲, 封飞飞, 王光绪, 刘军林, 江风益. 硅衬底GaN基LED N极性n型欧姆接触研究. 物理学报, 2010, 59(8): 5706-5709. doi: 10.7498/aps.59.5706
    [6] 潘书万, 亓东峰, 陈松岩, 李成, 黄巍, 赖虹凯. Si(100)表面Se薄膜生长及其在Ti/Si欧姆接触中的应用. 物理学报, 2011, 60(9): 098108. doi: 10.7498/aps.60.098108
    [7] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率. 物理学报, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [8] 王苏杰, 李树强, 吴小明, 陈芳, 江风益. 热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响. 物理学报, 2020, 69(4): 048103. doi: 10.7498/aps.69.20191720
    [9] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响. 物理学报, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [10] 李晓静, 赵德刚, 何晓光, 吴亮亮, 李亮, 杨静, 乐伶聪, 陈平, 刘宗顺, 江德生. 退火温度和退火气氛对Ni/Au与p-GaN之间欧姆接触性能的影响. 物理学报, 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [11] 王晓勇, 种明, 赵德刚, 苏艳梅. p-GaN/p-AlxGa1-xN异质结界面处二维空穴气的性质及其对欧姆接触的影响. 物理学报, 2012, 61(21): 217302. doi: 10.7498/aps.61.217302
    [12] 王尘, 许怡红, 李成, 林海军, 赵铭杰. 基于两步退火法提升Al/n+Ge欧姆接触及Ge n+/p结二极管性能. 物理学报, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [13] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
    [14] 丁志博, 王 坤, 陈田祥, 陈 迪, 姚淑德. 氧气氛中p-GaN/Ni/Au电极在相同温度不同合金时间下的欧姆接触形成机制和扩散行为. 物理学报, 2008, 57(4): 2445-2449. doi: 10.7498/aps.57.2445
    [15] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [16] 陈之战, 严成锋, 肖兵, 施尔畏, 黄维, 陈博源, 张静玉. 氢氟酸刻蚀对Ni/6H-SiC接触性质的作用. 物理学报, 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [17] 魏政鸿, 云峰, 丁文, 黄亚平, 王宏, 李强, 张烨, 郭茂峰, 刘硕, 吴红斌. 低接触电阻率Ni/Ag/Ti/Au反射镜电极的研究. 物理学报, 2015, 64(12): 127304. doi: 10.7498/aps.64.127304
    [18] 林 涛, 陈治明, 李 佳, 李连碧, 李青民, 蒲红斌. 6H碳化硅衬底上硅碳锗薄膜的生长特性研究. 物理学报, 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [19] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为. 物理学报, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [20] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究. 物理学报, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3630
  • PDF下载量:  668
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-03
  • 修回日期:  2009-09-23
  • 刊出日期:  2010-05-15

组合材料方法研究膜厚对Ni/SiC电极接触性质的影响

  • 1. (1)中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室,上海 200050; (2)中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室,上海 200050;中国科学院研究生院,北京 100049; (3)中国科学院上海硅酸盐研究所宽禁带半导体材料课题组,上海 200050; (4)中国科学院上海硅酸盐研究所宽禁带半导体材料课题组,上海 200050;中国科学院研究生院,北京 100049
    基金项目: 

    国家高技术研究发展计划(批准号:2006AA03A146),中国科学院知识创新项目(批准号:KGCX2-YW-206)

    上海市科学技术委员会(批准号:09DZ1141400,09520714900)和高性能陶瓷和超微结构国家重点实验室开放基金(批准号:SKL200810SIC)资助的课题.

摘要: 采用组合材料方法研究了金属Ni膜厚对Ni/SiC接触性质的影响.16个膜厚均为18 nm的Ni/SiC电极具有较为一致的肖特基接触性质;膜厚从10 nm增加到160 nm,肖特基接触的电流-电压(I-V)曲线随膜厚发生显著变化.分析表明这种变化源于膜厚对理想因子n和有效势垒高度ФB的影响.1000℃快速退火后,这些肖特基接触都转变为欧姆接触,Ni2Si是主要的生成物.I-V曲线测

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回