搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同气氛下多孔硅中电子偶素湮没行为研究

薛德胜 李卓昕 王丹妮 王宝义 魏龙 秦秀波

不同气氛下多孔硅中电子偶素湮没行为研究

薛德胜, 李卓昕, 王丹妮, 王宝义, 魏龙, 秦秀波
PDF
导出引用
导出核心图
  • 使用正电子湮没谱学方法,在不同气氛下对电化学腐蚀法制备的多孔硅中电子偶素的湮没行为进行了系统的研究.正电子湮没寿命谱测试结果表明,样品中存在长达40 ns的电子偶素湮没成分,并且进入多孔硅膜层的正电子约有80%形成电子偶素,具有非常高的电子偶素产额;在氧气气氛下,由于气体导致o-Ps发生自旋转化猝灭是使多孔硅样品中电子偶素寿命缩短的主要原因.结合正电子寿命-动量关联谱测量结果,分析了不同气氛下多孔硅样品中电子偶素湮没寿命及动量变化关系,讨论了多孔硅中电子偶素的湮没机理以及气氛对孔径计算理论模型的影响.
    • 基金项目: 国家自然科学基金(批准号:10835006,10705031,60606011)资助的课题.
    [1]

    Chuang S Y, Tao S J 1971 J. Chem. Phys. 54 4902

    [2]

    Ito Y, Yamashina T, Nagasaka M 1975 Appl. Phys. 6 323

    [3]

    Ma L, Chen Z Q, Wang S J, Peng Z L, Luo X H 1997 Acta Phys. Sin. 46 2267(in Chinese)[马 莉、陈志权、王少阶、彭治林、罗锡辉 1997 物理学报46 2267]

    [4]

    Sato K, Murakami H, Ito K, Hirata K, Kobayashi Y 2009 Mater. Sci. Forum 607 53

    [5]

    Kobayashi Y, Ito K, Oka T, Hirata K 2007 Radiat. Phys. Chem. 76 224

    [6]

    Nagashima Y, Kakimoto M, Hyodo T, Fujiwara K, Ichimura A, Chang T, Deng J, Akahane T, Chiba T, Suzuki K, McKee B T A, Stewart A T 1995 Phys. Rev. A 52 258

    [7]

    Eijt S W H, van Veen A, Falub C V, Escobar Galindo R, Schut H, Mijnarends P E, de Theije F K, Balkenende A R 2003 Radiat. Phys. Chem. 68 357

    [8]

    Yu R S, Ohdaira T, Suzuki R, Ito K, Hirata K, Sato K, Kobayashi Y, Xu J 2003b Appl. Phys. Lett. 83 4966

    [9]

    Jiang Z Y, Yu W Z, Huang Y J, Xia Y F, Ma S X 2006 Acta Phys. Sin. 55 3136 (in Chinese) [蒋中英、郁伟中、黄彦君、夏元复、马淑新 2006 物理学报 55 3743]

    [10]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Science and Technology Press) p131(in Chinese) [王少阶、陈志权、王 波、吴亦初、方鹏飞、张永学 2008 应用正电子谱学(武汉:湖北科学技术出版社)第130页]

    [11]

    Uedono A, Kawano T, Tanigawa S, Ban M, Kyoto M 1995 Nucl. Instrum. Meth. B 103 511

    [12]

    Suzuki N, Oonishi T, Hyodo T, Chang T 2002 Appl. Phys. A 74 791

    [13]

    Brandt W 1983 Positron Solid-State Physics (Amsterdam: North-Holland) p8

    [14]

    Stoll H, Castellaz P, Siegle A 2003 Principles and Applications of Positron&Positronium Chemistry (Singapore: World Scientific Publishing Company) p356

    [15]

    Kansy J 1996 Nucl. Instrum. Meth. A 374 235

    [16]

    Smith R L, Collins S D 1992 J. Appl. Phys. 71 8

    [17]

    Anto Pradeep J, Agarwal P 2008 J. Appl. Phys. 104 123515

    [18]

    Borghesi A, Sassella A, Pivac B, Pavesi L 1993 Solid State Commun. 87 1

    [19]

    Brusa R S, Deng W, Karwasz G P, Zecca A 2001 Appl. Phys. Lett. 79 1492

    [20]

    Dutta D, Ganguly B N, Gangopadhyay D, Mukherjee T, Dutta-Roy B 2004 J. Phys. Chem. B 108 8947

    [21]

    Yu W Z 2003 Positron Physics and Its Application (Bejing: Science Press) p54 (in Chinese) [郁伟中 2003 正电子物理及其应用 第一版 (北京:科学出版社)第54页]

    [22]

    Mohamed H F M 2001 Egyptian Journal of Solids 24 41

    [23]

    Itoh Y, Murakami H, Kinoshita A 1996 Appl. Surf. Sci. 102 423

    [24]

    Castellaz P, Major J, Mujica C, Schneider H, Seeger A, Siegle A, Stoll H, Billard I 1996 J. Radioanal. Nucl. Ch. 210 457

    [25]

    Itoh Y, Murakami H, Kinoshita A 1994 Hyperfine Interact. 84 121

    [26]

    Shinohara N, Suzuki N, Chang T, Hyodo T 2001 Phys. Rev. A 64 042702

    [27]

    Tischler M A, Collins R T, Stathis J H, Tsang J C 1992 Appl. Phys. Lett. 60 639

    [28]

    Itoh Y, Murakami H, Kinoshita A 1995 Mater. Sci. Forum. 173 175

    [29]

    Tao S J 1972 J. Chem. Phys. 56 5499

    [30]

    Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51

  • [1]

    Chuang S Y, Tao S J 1971 J. Chem. Phys. 54 4902

    [2]

    Ito Y, Yamashina T, Nagasaka M 1975 Appl. Phys. 6 323

    [3]

    Ma L, Chen Z Q, Wang S J, Peng Z L, Luo X H 1997 Acta Phys. Sin. 46 2267(in Chinese)[马 莉、陈志权、王少阶、彭治林、罗锡辉 1997 物理学报46 2267]

    [4]

    Sato K, Murakami H, Ito K, Hirata K, Kobayashi Y 2009 Mater. Sci. Forum 607 53

    [5]

    Kobayashi Y, Ito K, Oka T, Hirata K 2007 Radiat. Phys. Chem. 76 224

    [6]

    Nagashima Y, Kakimoto M, Hyodo T, Fujiwara K, Ichimura A, Chang T, Deng J, Akahane T, Chiba T, Suzuki K, McKee B T A, Stewart A T 1995 Phys. Rev. A 52 258

    [7]

    Eijt S W H, van Veen A, Falub C V, Escobar Galindo R, Schut H, Mijnarends P E, de Theije F K, Balkenende A R 2003 Radiat. Phys. Chem. 68 357

    [8]

    Yu R S, Ohdaira T, Suzuki R, Ito K, Hirata K, Sato K, Kobayashi Y, Xu J 2003b Appl. Phys. Lett. 83 4966

    [9]

    Jiang Z Y, Yu W Z, Huang Y J, Xia Y F, Ma S X 2006 Acta Phys. Sin. 55 3136 (in Chinese) [蒋中英、郁伟中、黄彦君、夏元复、马淑新 2006 物理学报 55 3743]

    [10]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Science and Technology Press) p131(in Chinese) [王少阶、陈志权、王 波、吴亦初、方鹏飞、张永学 2008 应用正电子谱学(武汉:湖北科学技术出版社)第130页]

    [11]

    Uedono A, Kawano T, Tanigawa S, Ban M, Kyoto M 1995 Nucl. Instrum. Meth. B 103 511

    [12]

    Suzuki N, Oonishi T, Hyodo T, Chang T 2002 Appl. Phys. A 74 791

    [13]

    Brandt W 1983 Positron Solid-State Physics (Amsterdam: North-Holland) p8

    [14]

    Stoll H, Castellaz P, Siegle A 2003 Principles and Applications of Positron&Positronium Chemistry (Singapore: World Scientific Publishing Company) p356

    [15]

    Kansy J 1996 Nucl. Instrum. Meth. A 374 235

    [16]

    Smith R L, Collins S D 1992 J. Appl. Phys. 71 8

    [17]

    Anto Pradeep J, Agarwal P 2008 J. Appl. Phys. 104 123515

    [18]

    Borghesi A, Sassella A, Pivac B, Pavesi L 1993 Solid State Commun. 87 1

    [19]

    Brusa R S, Deng W, Karwasz G P, Zecca A 2001 Appl. Phys. Lett. 79 1492

    [20]

    Dutta D, Ganguly B N, Gangopadhyay D, Mukherjee T, Dutta-Roy B 2004 J. Phys. Chem. B 108 8947

    [21]

    Yu W Z 2003 Positron Physics and Its Application (Bejing: Science Press) p54 (in Chinese) [郁伟中 2003 正电子物理及其应用 第一版 (北京:科学出版社)第54页]

    [22]

    Mohamed H F M 2001 Egyptian Journal of Solids 24 41

    [23]

    Itoh Y, Murakami H, Kinoshita A 1996 Appl. Surf. Sci. 102 423

    [24]

    Castellaz P, Major J, Mujica C, Schneider H, Seeger A, Siegle A, Stoll H, Billard I 1996 J. Radioanal. Nucl. Ch. 210 457

    [25]

    Itoh Y, Murakami H, Kinoshita A 1994 Hyperfine Interact. 84 121

    [26]

    Shinohara N, Suzuki N, Chang T, Hyodo T 2001 Phys. Rev. A 64 042702

    [27]

    Tischler M A, Collins R T, Stathis J H, Tsang J C 1992 Appl. Phys. Lett. 60 639

    [28]

    Itoh Y, Murakami H, Kinoshita A 1995 Mater. Sci. Forum. 173 175

    [29]

    Tao S J 1972 J. Chem. Phys. 56 5499

    [30]

    Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51

  • [1] 薛德胜, 李卓昕, 王丹妮, 王宝义, 魏龙, 秦秀波. 水蒸气退火多孔硅发光性能的正电子谱学研究. 物理学报, 2010, 59(12): 8915-8919. doi: 10.7498/aps.59.8915
    [2] 张云鹏, 刘国磊, 邱学军, 何正红, 白 浪, 王 跃, 陈 鹏, 熊祖洪. 矫顽力可调的多孔硅基Fe膜. 物理学报, 2006, 55(11): 6101-6107. doi: 10.7498/aps.55.6101
    [3] 张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静. 纳米压印多孔硅模板的研究. 物理学报, 2014, 63(1): 018102. doi: 10.7498/aps.63.018102
    [4] 白 莹, 莫育俊, 兰燕娜. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [5] 胡 明, 邸玉贤, 计欣华, 秦玉文, 陈金龙. 基片曲率法在多孔硅薄膜残余应力检测中的应用. 物理学报, 2006, 55(10): 5451-5454. doi: 10.7498/aps.55.5451
    [6] 杨海波, 胡 明, 张 伟, 张绪瑞, 李德军, 王明霞. 基于纳米压痕法的多孔硅硬度及杨氏模量与微观结构关系研究. 物理学报, 2007, 56(7): 4032-4038. doi: 10.7498/aps.56.4032
    [7] 许路加, 胡明, 杨海波, 杨孟琳, 张洁. 基于微结构参数建模的多孔硅绝热层热导率研究. 物理学报, 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [8] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究. 物理学报, 2015, 64(13): 137104. doi: 10.7498/aps.64.137104
    [9] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究. 物理学报, 2015, 64(13): 137102. doi: 10.7498/aps.64.137102
    [10] 徐大印, 刘彦平, 何志巍, 方泽波, 刘雪芹, 王印月. 多孔硅衬底上溅射沉积SiC:Tb薄膜的光致发光行为. 物理学报, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3647
  • PDF下载量:  799
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-23
  • 修回日期:  2010-01-27
  • 刊出日期:  2010-09-15

不同气氛下多孔硅中电子偶素湮没行为研究

  • 1. (1)兰州大学磁学与磁性材料教育部重点实验室,兰州 730000; (2)兰州大学磁学与磁性材料教育部重点实验室,兰州 730000;中国科学院高能物理研究所,核分析技术重点实验室,北京 100049; (3)中国科学院高能物理研究所,核分析技术重点实验室,北京 100049
    基金项目: 

    国家自然科学基金(批准号:10835006,10705031,60606011)资助的课题.

摘要: 使用正电子湮没谱学方法,在不同气氛下对电化学腐蚀法制备的多孔硅中电子偶素的湮没行为进行了系统的研究.正电子湮没寿命谱测试结果表明,样品中存在长达40 ns的电子偶素湮没成分,并且进入多孔硅膜层的正电子约有80%形成电子偶素,具有非常高的电子偶素产额;在氧气气氛下,由于气体导致o-Ps发生自旋转化猝灭是使多孔硅样品中电子偶素寿命缩短的主要原因.结合正电子寿命-动量关联谱测量结果,分析了不同气氛下多孔硅样品中电子偶素湮没寿命及动量变化关系,讨论了多孔硅中电子偶素的湮没机理以及气氛对孔径计算理论模型的影响.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回