搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外场参数对超冷原子向异核三原子分子转化的影响

李冠强 彭娉

外场参数对超冷原子向异核三原子分子转化的影响

李冠强, 彭娉
PDF
导出引用
导出核心图
  • 文章研究了利用双光子受激拉曼绝热暗通道技术实现超冷原子向异核三原子分子转化过程中,可控外场参量(包括拉比脉冲的强度,脉宽以及单光子失谐等)对系统绝热性和转化效率的影响. 结果发现,系统的转化效率随斯托克斯光强度的增大先减小,后振荡,最终趋于小于1的稳定值,而随抽运光强的增大先增大,然后很快趋于1,表明抽运光和斯托克斯光对超冷分子的形成具有不同的作用. 脉冲宽度既能决定最终转化效率的大小,也能反映达到稳定转化所需的时间. 单光子失谐为红失谐时,系统有比较高的稳定转化效率,而蓝失谐光脉冲则不利于超冷分子的形成. 另外,还讨论了超冷异核三原子分子转化系统在经历不同反应通道时绝热性和转化效率的差别.
    • 基金项目: 陕西科技大学自然科学基金(批准号:ZX10-35)资助的课题.
    [1]

    Chin C, Flambaum V V, Kozlov M G 2009 New J. Phys. 11 055048

    [2]

    Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049

    [3]

    Köhler T, Góral K, Julienne P 2006 Rev. Mod. Phys. 78 1311

    [4]

    Jones K M, Tiesinga E, Lett P D, Julienne P 2006 Rev. Mod. Phys. 78 483

    [5]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225

    [6]

    Mackie M, Kowalski R, Javanainen J 2000 Phys. Rev. Lett. 84 3803

    [7]

    Mackie M 2002 Phys. Rev. A 66 043613

    [8]

    Drummond P D, Kheruntsyan K V, Heinzen D J, Wynar R H 2002 Phys. Rev. A 65 063619

    [9]

    Mackie M, Härkönen K, Collin A, Suominen K A, Javanainen J 2004 Phys. Rev. A 70 013614

    [10]

    Meng S Y, Liu J 2010 Prog. Phys. 30 280 (in Chinese) [孟少英、刘 杰 2010 物理学进展 30 280]

    [11]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [12]

    Xie M, Ling L, Yang G J 2005 Acta Phys. Sin. 54 3616 (in Chinese) [谢 旻、凌 琳、杨国建 2005 物理学报 54 3616]

    [13]

    Winkler K, Thalhammer G, Theis M, Ritsch H, Grimm R,Denschlag J H 2005 Phys. Rev. Lett. 95 063202

    [14]

    Sage J M, Sainis S, Bergeman T, DeMille D 2005 Phys. Rev. Lett. 94 203001

    [15]

    Winkler K, Lang F, Thalhammer G, Straten P V, Grimm R, Denschlag J H 2007 Phys. Rev. Lett. 98 043201

    [16]

    Ni K K, Ospelkaus S, de Miranda M H G, Peer A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231

    [17]

    Ospelkaus S, Ni K K, Quéméner G, Neyenhuis B, Wang D, de Miranda M H G, Bohn J L, Ye J, Jin D S 2010 Phys. Rev. Lett. 104 030402

    [18]

    Aikawa K, Akamatsu D, Hayashi M, Oasa K, Kobayashi J, Naidon P, Kishimoto T, Ueda M, Inouye S 2010 Phys. Rev. Lett. 105 203001

    [19]

    Pu H, Maenner P, Zhang W, Ling H Y 2007 Phys. Rev. Lett. 98 050406

    [20]

    Ling H Y, Maenner P, Zhang W, Pu H 2007 Phys. Rev. A 75 033615

    [21]

    Jing H, Zheng F, Jiang Y, Geng Z 2008 Phys. Rev. A 78 033617

    [22]

    Meng S Y, Fu L B, Liu J 2008 Phys. Rev. A 78 053410

    [23]

    Meng S Y, Fu L B, Chen J, Liu J 2009 Phys. Rev. A 79 063415

    [24]

    Jing H, Cheng J, Meystre P 2008 Phys. Rev. A 77 043614

    [25]

    Geng Z D, Jia N, Zhao X, Xia T Y, Jing H 2010 Chin. Phys. Lett. 27 030303

    [26]

    Sun X P, Feng Z F,Li W D, Jia S T 2007 Acta Phys.Sin. 56 5727 (in Chinese) [孙晓鹏、冯志芳、李卫东、贾锁堂 2007 物理学报 56 5727]

    [27]

    Gupta M, Dastidar K R 2010 Phys. Rev. A 81 033610

    [28]

    Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese) [孟少英、吴 炜 2009 物理学报 58 5311]

    [29]

    Meng S Y, Wu W,Liu B 2009 Acta Phys. Sin. 58 6902 (in Chinese) [孟少英、吴 炜、刘 彬 2009 物理学报 58 6902]

    [30]

    Lu L H, Li Y Q 2008 Phys. Rev. A 77 053611

    [31]

    Meng S Y, Wu W, Liu B, Ye D F, Fu L B 2009 Chin. Phys. B 18 3844

  • [1]

    Chin C, Flambaum V V, Kozlov M G 2009 New J. Phys. 11 055048

    [2]

    Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049

    [3]

    Köhler T, Góral K, Julienne P 2006 Rev. Mod. Phys. 78 1311

    [4]

    Jones K M, Tiesinga E, Lett P D, Julienne P 2006 Rev. Mod. Phys. 78 483

    [5]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225

    [6]

    Mackie M, Kowalski R, Javanainen J 2000 Phys. Rev. Lett. 84 3803

    [7]

    Mackie M 2002 Phys. Rev. A 66 043613

    [8]

    Drummond P D, Kheruntsyan K V, Heinzen D J, Wynar R H 2002 Phys. Rev. A 65 063619

    [9]

    Mackie M, Härkönen K, Collin A, Suominen K A, Javanainen J 2004 Phys. Rev. A 70 013614

    [10]

    Meng S Y, Liu J 2010 Prog. Phys. 30 280 (in Chinese) [孟少英、刘 杰 2010 物理学进展 30 280]

    [11]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [12]

    Xie M, Ling L, Yang G J 2005 Acta Phys. Sin. 54 3616 (in Chinese) [谢 旻、凌 琳、杨国建 2005 物理学报 54 3616]

    [13]

    Winkler K, Thalhammer G, Theis M, Ritsch H, Grimm R,Denschlag J H 2005 Phys. Rev. Lett. 95 063202

    [14]

    Sage J M, Sainis S, Bergeman T, DeMille D 2005 Phys. Rev. Lett. 94 203001

    [15]

    Winkler K, Lang F, Thalhammer G, Straten P V, Grimm R, Denschlag J H 2007 Phys. Rev. Lett. 98 043201

    [16]

    Ni K K, Ospelkaus S, de Miranda M H G, Peer A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231

    [17]

    Ospelkaus S, Ni K K, Quéméner G, Neyenhuis B, Wang D, de Miranda M H G, Bohn J L, Ye J, Jin D S 2010 Phys. Rev. Lett. 104 030402

    [18]

    Aikawa K, Akamatsu D, Hayashi M, Oasa K, Kobayashi J, Naidon P, Kishimoto T, Ueda M, Inouye S 2010 Phys. Rev. Lett. 105 203001

    [19]

    Pu H, Maenner P, Zhang W, Ling H Y 2007 Phys. Rev. Lett. 98 050406

    [20]

    Ling H Y, Maenner P, Zhang W, Pu H 2007 Phys. Rev. A 75 033615

    [21]

    Jing H, Zheng F, Jiang Y, Geng Z 2008 Phys. Rev. A 78 033617

    [22]

    Meng S Y, Fu L B, Liu J 2008 Phys. Rev. A 78 053410

    [23]

    Meng S Y, Fu L B, Chen J, Liu J 2009 Phys. Rev. A 79 063415

    [24]

    Jing H, Cheng J, Meystre P 2008 Phys. Rev. A 77 043614

    [25]

    Geng Z D, Jia N, Zhao X, Xia T Y, Jing H 2010 Chin. Phys. Lett. 27 030303

    [26]

    Sun X P, Feng Z F,Li W D, Jia S T 2007 Acta Phys.Sin. 56 5727 (in Chinese) [孙晓鹏、冯志芳、李卫东、贾锁堂 2007 物理学报 56 5727]

    [27]

    Gupta M, Dastidar K R 2010 Phys. Rev. A 81 033610

    [28]

    Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese) [孟少英、吴 炜 2009 物理学报 58 5311]

    [29]

    Meng S Y, Wu W,Liu B 2009 Acta Phys. Sin. 58 6902 (in Chinese) [孟少英、吴 炜、刘 彬 2009 物理学报 58 6902]

    [30]

    Lu L H, Li Y Q 2008 Phys. Rev. A 77 053611

    [31]

    Meng S Y, Wu W, Liu B, Ye D F, Fu L B 2009 Chin. Phys. B 18 3844

  • [1] 吴炜, 孟少英. 原子-二聚物分子转化系统在受激拉曼绝热过程中的绝热保真度. 物理学报, 2009, 58(8): 5311-5317. doi: 10.7498/aps.58.5311
    [2] 李冠强, 彭娉, 曹振洲, 薛具奎. 超冷原子向异核四聚物分子A3B的绝热转化. 物理学报, 2012, 61(9): 090301. doi: 10.7498/aps.61.090301
    [3] 秦燕, 栗生长. 基于方波脉冲外场的超冷原子-分子绝热转化. 物理学报, 2018, 67(20): 203701. doi: 10.7498/aps.67.20180908
    [4] 赵岫鸟, 孙建安, 豆福全. 外场形式对超冷原子-多聚物分子转化效率的影响. 物理学报, 2014, 63(22): 220302. doi: 10.7498/aps.63.220302
    [5] 姚洪斌, 郑雨军. NaI分子的非绝热效应. 物理学报, 2011, 60(12): 128201. doi: 10.7498/aps.60.128201
    [6] 周艳微, 林 强, 王育竹, 叶存云. 基于绝热快速通道控制原子布居数及其相干性的研究. 物理学报, 2005, 54(6): 2799-2803. doi: 10.7498/aps.54.2799
    [7] 袁进胜, 孙昌璞. 旋转样品核四极共振的量子绝热微扰论分析. 物理学报, 1995, 44(1): 29-34. doi: 10.7498/aps.44.29
    [8] 张登玉, 高 峰, 郭 萍. 强热辐射环境中两能级原子量子态保真度. 物理学报, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [9] 潘长宁, 方见树, 廖湘萍, 方卯发, 彭小芳. 耗散系统中实现原子态量子隐形传态的保真度. 物理学报, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [10] 李晓克, 冯伟. 非绝热分子动力学的量子路径模拟. 物理学报, 2017, 66(15): 153101. doi: 10.7498/aps.66.153101
    [11] 詹明生, 柳晓军, 刘堂昆, 王继锁. 纠缠态原子偶极间相互作用对量子态保真度的影响. 物理学报, 2000, 49(4): 708-712. doi: 10.7498/aps.49.708
    [12] 刘 彬, 傅立斌, 王冠芳, 赵 鸿. 非线性三能级体系的绝热朗道-齐纳隧穿. 物理学报, 2007, 56(7): 3733-3738. doi: 10.7498/aps.56.3733
    [13] 秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于. 三维绝热简正波-抛物方程理论及应用. 物理学报, 2016, 65(3): 034301. doi: 10.7498/aps.65.034301
    [14] 于宛让, 计新. 基于超绝热捷径技术快速制备超导三量子比特Greenberger-Horne-Zeilinger态. 物理学报, 2019, 68(3): 030302. doi: 10.7498/aps.68.20181922
    [15] 李丽萍, 石玉珠, 李毓成. 强磁场中氢原子能级的另一种绝热变分计算. 物理学报, 1998, 47(8): 1241-1247. doi: 10.7498/aps.47.1241
    [16] 管勇, 阮军. 绝热跃迁方法测量铯喷泉钟冷原子碰撞频移的研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191800
    [17] 胡靖宇, 毛腾飞, 豆福全, 赵清. 复合绝热通道技术在谐相互作用调制的Landau-Zener模型中的应用. 物理学报, 2013, 62(17): 170303. doi: 10.7498/aps.62.170303
    [18] 林仁明, 张林. 受驱动光学系统多光子量子统计理论(Ⅲ)——绝热消除方法的改进. 物理学报, 1989, 38(4): 548-558. doi: 10.7498/aps.38.548
    [19] 王菊霞. 二能级原子与多模光场简并多光子共振相互作用系统中量子保真度的演化特性. 物理学报, 2014, 63(18): 184203. doi: 10.7498/aps.63.184203
    [20] 庄 飞, 沈建其. 螺旋光纤系统中非绝热条件几何相移. 物理学报, 2005, 54(3): 1048-1052. doi: 10.7498/aps.54.1048
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3526
  • PDF下载量:  516
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-23
  • 修回日期:  2011-01-21
  • 刊出日期:  2011-11-15

外场参数对超冷原子向异核三原子分子转化的影响

  • 1. 陕西科技大学理学院,西安 710021
    基金项目: 

    陕西科技大学自然科学基金(批准号:ZX10-35)资助的课题.

摘要: 文章研究了利用双光子受激拉曼绝热暗通道技术实现超冷原子向异核三原子分子转化过程中,可控外场参量(包括拉比脉冲的强度,脉宽以及单光子失谐等)对系统绝热性和转化效率的影响. 结果发现,系统的转化效率随斯托克斯光强度的增大先减小,后振荡,最终趋于小于1的稳定值,而随抽运光强的增大先增大,然后很快趋于1,表明抽运光和斯托克斯光对超冷分子的形成具有不同的作用. 脉冲宽度既能决定最终转化效率的大小,也能反映达到稳定转化所需的时间. 单光子失谐为红失谐时,系统有比较高的稳定转化效率,而蓝失谐光脉冲则不利于超冷分子的形成. 另外,还讨论了超冷异核三原子分子转化系统在经历不同反应通道时绝热性和转化效率的差别.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回