搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属/多孔硅/单晶硅(M/PS/Si)微结构的电学特性

孙鹏 胡明 刘博 孙凤云 许路加

金属/多孔硅/单晶硅(M/PS/Si)微结构的电学特性

孙鹏, 胡明, 刘博, 孙凤云, 许路加
PDF
导出引用
导出核心图
  • 采用双槽电化学腐蚀法制备多孔硅层,然后在多孔硅表面沉积形成金属电极,制备出M/PS/Si微结构.利用SEM分析多孔硅的表面形貌,通过测试其I-V特性分析M/PS/Si微结构的电学特性.结果表明:由Pt做电极形成的M/PS/Si结构,表现出非整流特性.M/PS/Si结构的I-V曲线由线性区和非线性区组成,多孔硅孔隙率越高的M/PS/Si结构的I-V特性曲线线性区越宽.由Cu做电极形成的M/PS/Si结构,表现出整流特性.其整流比随多孔硅孔隙率增加而减小.
    • 基金项目: 国家自然科学基金(批准号:60771019)资助的课题.
    [1]

    Chang C C, Chen L C 1997 Materials Letters 32 287

    [2]

    Kim H J, Kim Y Y, Lee K W 2010 Current Applied Physics 10 181

    [3]

    Massera E, Nasti I, Quercia L, Rea I, Francia G Di 2004 Sensors and Actuators B:Chemical 102 195

    [4]

    Irajizad A, Rahimi F, Chavoshi M, Ahadian M M 2004 Sensors and Actuators B:Chemical 100 341

    [5]

    Dücsö C S, Vázsonyi , dám M, Szabó I, Bársony I, Gardeniers J G E,Berg A Van Den 1997 Sensors and Actuators A:Physical 60 235

    [6]

    Kronast W, Müller B, Siedel W, Stoffel A 2001 Sensors and Actuators A:Physical 87 188

    [7]

    Tsamis C, Nassiopoulou A G, Tserepi A 2003 Sensors and Actuators B:Chemical 95 78

    [8]

    Papadimitriou D, Tsamis C, Nassiopoulou A G 2004 Sensors and Actuators B:Chemical 103 356

    [9]

    Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese) [房振乾、胡 明、张 伟、张绪瑞 2008 物理学报 57 103]

    [10]

    Xu L J, Hu M, Yang H B, Yang M L, Zhang J 2010 Acta Phys. Sin. 59 8794 (in Chinese) [许路加、胡 明、杨海波、杨孟琳、张 洁 2010 物理学报 59 8794]

    [11]

    Ding Z B, Wang K, Chen T X, Chen D, Yao S D 2008 Acta Phys. Sin. 57 2445 (in Chinese) [丁志博、王 坤、陈田祥、陈 迪、姚淑德 2008 物理学报 57 2445]

    [12]

    Huang W, Chen Z Z, Chen Y, Shi E W, Zhang J Y, Liu Q F, Liu Q 2010 Acta Phys. Sin. 59 3466 (in Chinese) [黄 维、陈之战、陈 义、施尔畏、张静玉、刘庆峰、刘 茜 2010 物理学报 59 3466]

    [13]

    Ansari Z A, Hong Kwangpyo, Lee Chongmu 2002 Materials Science and Engineering B 90 103

    [14]

    Arenas M Concepción, Hu Hailin, Río J Antonio del, Sánchez Aarón, Nicho M E 2006 Solar Energy Materials and Solar Cells 90 2413

    [15]

    Jemai R, Alaya A, Meskini O, Nouiri M, Mghaieth R, Khirouni K, Alaya S 2007 Materials Science and Engineering B 137 263

    [16]

    Yang H B, Hu M, Zhang W, Zhang X R, Li D J, Wang M X 2007 Acta Phys. Sin. 56 4032 (in Chinese) [杨海波、胡 明、张 伟、张绪瑞、李德军、王明霞 2007 物理学报 56 4032]

    [17]

    Remaki B, Populaire C, Lysenko V, Barbier D 2003 Materials Science and Engineering B 101 313

    [18]

    Beale MIJ 1985 Journal of Crystal Growth 73 622

    [19]

    Bazrafkan I, Dariani RS 2009 Physica B:Condensed Matter 404 1638

    [20]

    Molnár K, Mohácsy T, Abdulhadi A H, Volk J, Bársony I 2003 Physica Status Solidi A 197 446

    [21]

    Korcala Andrzej, Baa Wacaw, Bratkowski Artur, Borowski Piotr, ukasiak Zbigniew 2006 Optical Materials 28 143

    [22]

    Mkhitaryan Z H, Shatveryan A A, Adamyan A Z, Aroutiounian V M 2005 Optical Materials 27 962

    [23]

    Vinod P N 2009 Journal of Alloys and Compounds 470 393

  • [1]

    Chang C C, Chen L C 1997 Materials Letters 32 287

    [2]

    Kim H J, Kim Y Y, Lee K W 2010 Current Applied Physics 10 181

    [3]

    Massera E, Nasti I, Quercia L, Rea I, Francia G Di 2004 Sensors and Actuators B:Chemical 102 195

    [4]

    Irajizad A, Rahimi F, Chavoshi M, Ahadian M M 2004 Sensors and Actuators B:Chemical 100 341

    [5]

    Dücsö C S, Vázsonyi , dám M, Szabó I, Bársony I, Gardeniers J G E,Berg A Van Den 1997 Sensors and Actuators A:Physical 60 235

    [6]

    Kronast W, Müller B, Siedel W, Stoffel A 2001 Sensors and Actuators A:Physical 87 188

    [7]

    Tsamis C, Nassiopoulou A G, Tserepi A 2003 Sensors and Actuators B:Chemical 95 78

    [8]

    Papadimitriou D, Tsamis C, Nassiopoulou A G 2004 Sensors and Actuators B:Chemical 103 356

    [9]

    Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese) [房振乾、胡 明、张 伟、张绪瑞 2008 物理学报 57 103]

    [10]

    Xu L J, Hu M, Yang H B, Yang M L, Zhang J 2010 Acta Phys. Sin. 59 8794 (in Chinese) [许路加、胡 明、杨海波、杨孟琳、张 洁 2010 物理学报 59 8794]

    [11]

    Ding Z B, Wang K, Chen T X, Chen D, Yao S D 2008 Acta Phys. Sin. 57 2445 (in Chinese) [丁志博、王 坤、陈田祥、陈 迪、姚淑德 2008 物理学报 57 2445]

    [12]

    Huang W, Chen Z Z, Chen Y, Shi E W, Zhang J Y, Liu Q F, Liu Q 2010 Acta Phys. Sin. 59 3466 (in Chinese) [黄 维、陈之战、陈 义、施尔畏、张静玉、刘庆峰、刘 茜 2010 物理学报 59 3466]

    [13]

    Ansari Z A, Hong Kwangpyo, Lee Chongmu 2002 Materials Science and Engineering B 90 103

    [14]

    Arenas M Concepción, Hu Hailin, Río J Antonio del, Sánchez Aarón, Nicho M E 2006 Solar Energy Materials and Solar Cells 90 2413

    [15]

    Jemai R, Alaya A, Meskini O, Nouiri M, Mghaieth R, Khirouni K, Alaya S 2007 Materials Science and Engineering B 137 263

    [16]

    Yang H B, Hu M, Zhang W, Zhang X R, Li D J, Wang M X 2007 Acta Phys. Sin. 56 4032 (in Chinese) [杨海波、胡 明、张 伟、张绪瑞、李德军、王明霞 2007 物理学报 56 4032]

    [17]

    Remaki B, Populaire C, Lysenko V, Barbier D 2003 Materials Science and Engineering B 101 313

    [18]

    Beale MIJ 1985 Journal of Crystal Growth 73 622

    [19]

    Bazrafkan I, Dariani RS 2009 Physica B:Condensed Matter 404 1638

    [20]

    Molnár K, Mohácsy T, Abdulhadi A H, Volk J, Bársony I 2003 Physica Status Solidi A 197 446

    [21]

    Korcala Andrzej, Baa Wacaw, Bratkowski Artur, Borowski Piotr, ukasiak Zbigniew 2006 Optical Materials 28 143

    [22]

    Mkhitaryan Z H, Shatveryan A A, Adamyan A Z, Aroutiounian V M 2005 Optical Materials 27 962

    [23]

    Vinod P N 2009 Journal of Alloys and Compounds 470 393

  • [1] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率. 物理学报, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [2] 潘书万, 亓东峰, 陈松岩, 李成, 黄巍, 赖虹凯. Si(100)表面Se薄膜生长及其在Ti/Si欧姆接触中的应用. 物理学报, 2011, 60(9): 098108. doi: 10.7498/aps.60.098108
    [3] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响. 物理学报, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [4] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
    [5] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制. 物理学报, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [6] 魏政鸿, 云峰, 丁文, 黄亚平, 王宏, 李强, 张烨, 郭茂峰, 刘硕, 吴红斌. 低接触电阻率Ni/Ag/Ti/Au反射镜电极的研究. 物理学报, 2015, 64(12): 127304. doi: 10.7498/aps.64.127304
    [7] 刘家琦, 刘克安, 张新明. 一维双相介质孔隙率的小波多尺度反演. 物理学报, 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [8] 卢璐, 吉鸿飞, 郭各朴, 郭霞生, 屠娟, 邱媛媛, 章东. 超声增强藻酸钙凝胶支架材料孔隙率的研究. 物理学报, 2015, 64(2): 024301. doi: 10.7498/aps.64.024301
    [9] 乔双双, 杨 志, 张 威, 李梦轲, 魏 强, 曹 璐. ZnO纳米线场效应管的制备及I-V特性研究. 物理学报, 2008, 57(9): 5887-5892. doi: 10.7498/aps.57.5887
    [10] 姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德. 基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化. 物理学报, 2012, 61(13): 138801. doi: 10.7498/aps.61.138801
    [11] 许路加, 胡明, 杨海波, 杨孟琳, 张洁. 基于微结构参数建模的多孔硅绝热层热导率研究. 物理学报, 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [12] 谷岩, 刘雨生, 贺红亮, 陈学锋, 王根水, 董显林, 冯宁博, 聂恒昌. 冲击波加载下孔隙率对Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 铁电陶瓷去极化性能的影响. 物理学报, 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [13] 叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军. 通过AC-HVAF方法制备铁基非晶合金涂层的结构分析. 物理学报, 2014, 63(7): 078101. doi: 10.7498/aps.63.078101
    [14] 邱冲, 封飞飞, 王光绪, 刘军林, 江风益. 硅衬底GaN基LED N极性n型欧姆接触研究. 物理学报, 2010, 59(8): 5706-5709. doi: 10.7498/aps.59.5706
    [15] 王苏杰, 李树强, 吴小明, 陈芳, 江风益. 热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响. 物理学报, 2020, 69(4): 048103. doi: 10.7498/aps.69.20191720
    [16] 李晓静, 赵德刚, 何晓光, 吴亮亮, 李亮, 杨静, 乐伶聪, 陈平, 刘宗顺, 江德生. 退火温度和退火气氛对Ni/Au与p-GaN之间欧姆接触性能的影响. 物理学报, 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [17] 张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新. 60Coγ射线对高铝组分Al0.5Ga0.5N基p-i-n日盲型光探测器理想因子的影响. 物理学报, 2013, 62(7): 076106. doi: 10.7498/aps.62.076106
    [18] 吕 玲, 龚 欣, 郝 跃. 感应耦合等离子体刻蚀p-GaN的表面特性. 物理学报, 2008, 57(2): 1128-1132. doi: 10.7498/aps.57.1128
    [19] 王晓勇, 种明, 赵德刚, 苏艳梅. p-GaN/p-AlxGa1-xN异质结界面处二维空穴气的性质及其对欧姆接触的影响. 物理学报, 2012, 61(21): 217302. doi: 10.7498/aps.61.217302
    [20] 王尘, 许怡红, 李成, 林海军, 赵铭杰. 基于两步退火法提升Al/n+Ge欧姆接触及Ge n+/p结二极管性能. 物理学报, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3977
  • PDF下载量:  776
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-22
  • 修回日期:  2010-08-29
  • 刊出日期:  2011-05-15

金属/多孔硅/单晶硅(M/PS/Si)微结构的电学特性

  • 1. 天津大学电子信息工程学院,天津 300072
    基金项目: 

    国家自然科学基金(批准号:60771019)资助的课题.

摘要: 采用双槽电化学腐蚀法制备多孔硅层,然后在多孔硅表面沉积形成金属电极,制备出M/PS/Si微结构.利用SEM分析多孔硅的表面形貌,通过测试其I-V特性分析M/PS/Si微结构的电学特性.结果表明:由Pt做电极形成的M/PS/Si结构,表现出非整流特性.M/PS/Si结构的I-V曲线由线性区和非线性区组成,多孔硅孔隙率越高的M/PS/Si结构的I-V特性曲线线性区越宽.由Cu做电极形成的M/PS/Si结构,表现出整流特性.其整流比随多孔硅孔隙率增加而减小.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回