搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆截面金纳米管近场增强特性的研究

丛超 吴大建 刘晓峻

引用本文:
Citation:

椭圆截面金纳米管近场增强特性的研究

丛超, 吴大建, 刘晓峻

Study on the local field enhancement of elliptical gold nanotube

Cong Chao, Wu Da-Jian, Liu Xiao-Jun
PDF
导出引用
  • 本文基于时域有限差分方法(finite difference time domain, FDTD)研究了入射光波长、入射光偏振方向、纳米管几何形状、 管壁厚度及内核和包埋介质的变化对椭圆截面金纳米管近场分布特征的影响. 研究发现, 入射光波长为纳米管等离激元共振波长时, 纳米管近场增强最大; 入射光偏振方向与椭圆长轴夹角的增加会导致管内的场强迅速增大; 椭圆管半短轴变大可以调节纳米管场强分布从两端高、中间低变化为均匀分布; 内核和包埋介质介电常数的增大均会使得纳米管内部及周围场强逐渐减弱.
    The local electric field components of the elliptical gold nanotube are calculated based on the finite difference time domain (FDTD) method. It is find that when the wavelength of the incident light is just at a resonant wavelength, the local field enhancement of the gold nanotube reaches a maximum. The increase of the semiminor axis of the ellipse makes the distribution of the local field change from a distribution that is high in both sides and low in the middle part of the nanotube into a distribution that is uniform around the tube. With the increase of the angle between the incident polarization and the semimajor axis, the local electric field components increase rapidly. The increases of the dielectric constants for both the core and the embedding medium cause the local field around the nanotube to decrease.
    • 基金项目: 国家自然科学基金(批准号: 11104319, 11074124, 10904052), 江苏省自然科学基金(批准号: BF2011592)和江苏高校优势学科建设工程资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104319, 11074124, 10904052), the Natural Science Foundation of Jiangsu Province (Grant No. BK2011542), and PAPD.
    [1]

    Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y, Goudonnet J P 1999 Phys. Rev. Lett. 82 2590

    [2]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Requicha A A G, Atwater H A 2001 Adv. Mater. 13 1501

    [3]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331

    [4]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [5]

    Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567

    [6]

    Kundu J, Le F, Nordlander P, Halas N J 2008 Chem. Phys. Lett. 452 115

    [7]

    Neuendorf R, Quinten M, Kreibig U 1996 J. Chem. Phys. 104 6348

    [8]

    Bohren C F, Huffman D R 1983 Absorption and scattering of light by small particles (New York: Wiley)

    [9]

    Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev. B 66 155431

    [10]

    Wu D J, Xu X D, Liu X J 2008 J. Chem. Phys. 129 074711

    [11]

    Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302 419

    [12]

    Prodan E, Nordlander P, Halas N J 2003 Nano Lett. 3 1411

    [13]

    Schelm S, Smith G B 2005 J. Phys. Chem. B 109 1689

    [14]

    Prodan E, Nordlander P 2004 J. Chem. Phys. 120 5444

    [15]

    Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev. B 66 155431

    [16]

    Averitt R D, Westcott S L, Halas N J 1999 J. Opt. Soc. Am. B 16 1824

    [17]

    Averitt R D, Sarkar D, Halas N J 1997 Phys. Rev. Lett. 78 4217

    [18]

    Wu D J, Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese) [吴大建, 刘晓峻 2008 物理学报 57 5138]

    [19]

    Wu D J, Liu X J 2010 Appl. Phys. Lett. 97, 061904

    [20]

    Wu D J, Liu X J 2010 Appl. Phys. Lett. 96, 151912

    [21]

    Zhu J, Bai S W, Zhao J W, Li J J 2009 Appl. Phys. A 97 431

    [22]

    Leveque G, Martin O J F 2006 Opt. Express 14 9971

    [23]

    Limmer S J, Chou T P, Cao G Z 2003 J. Phys. Chem. B 107 13313

    [24]

    Mock J J, Oldenburg S J, Smith D R, Schultz D A, Schultz S 2002 Nano Lett. 2 465

    [25]

    Hendren W R, Murphy A, Evans P, Connor D, Wurtz G A, Zayats A V, Atkinson R, Pollard R J 2008 J. Phys.: Condens. Matter 20 362203

    [26]

    Cong C, Wu D J, Liu X J 2011 Acta Phys. Sin. 60 046102 (in Chinese) [丛超, 吴大建, 刘晓峻 2011 物理学报 60 046102]

    [27]

    Wu D J, Liu X J, Li B 2011 J. Appl. Phys. 109 083540

    [28]

    Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245

    [29]

    Wei H, Hao F, Huang Y Z, Wang W Z, Nordlander P, Xu H X 2008 Nano Lett. 8 2497

    [30]

    Brewer S H, Anthireya S J, Lappi S E, Drapcho D L, Franzen S 2002 Langmuir 18 4460

    [31]

    Oldenburg S J, Hale G D, Radloff C, Halas N J 1999 Appl. Phys. Lett. 75 1063

    [32]

    Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302 419

    [33]

    Zhu J 2007 Appl. Phys. A 88 673

  • [1]

    Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y, Goudonnet J P 1999 Phys. Rev. Lett. 82 2590

    [2]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Requicha A A G, Atwater H A 2001 Adv. Mater. 13 1501

    [3]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331

    [4]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [5]

    Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567

    [6]

    Kundu J, Le F, Nordlander P, Halas N J 2008 Chem. Phys. Lett. 452 115

    [7]

    Neuendorf R, Quinten M, Kreibig U 1996 J. Chem. Phys. 104 6348

    [8]

    Bohren C F, Huffman D R 1983 Absorption and scattering of light by small particles (New York: Wiley)

    [9]

    Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev. B 66 155431

    [10]

    Wu D J, Xu X D, Liu X J 2008 J. Chem. Phys. 129 074711

    [11]

    Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302 419

    [12]

    Prodan E, Nordlander P, Halas N J 2003 Nano Lett. 3 1411

    [13]

    Schelm S, Smith G B 2005 J. Phys. Chem. B 109 1689

    [14]

    Prodan E, Nordlander P 2004 J. Chem. Phys. 120 5444

    [15]

    Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev. B 66 155431

    [16]

    Averitt R D, Westcott S L, Halas N J 1999 J. Opt. Soc. Am. B 16 1824

    [17]

    Averitt R D, Sarkar D, Halas N J 1997 Phys. Rev. Lett. 78 4217

    [18]

    Wu D J, Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese) [吴大建, 刘晓峻 2008 物理学报 57 5138]

    [19]

    Wu D J, Liu X J 2010 Appl. Phys. Lett. 97, 061904

    [20]

    Wu D J, Liu X J 2010 Appl. Phys. Lett. 96, 151912

    [21]

    Zhu J, Bai S W, Zhao J W, Li J J 2009 Appl. Phys. A 97 431

    [22]

    Leveque G, Martin O J F 2006 Opt. Express 14 9971

    [23]

    Limmer S J, Chou T P, Cao G Z 2003 J. Phys. Chem. B 107 13313

    [24]

    Mock J J, Oldenburg S J, Smith D R, Schultz D A, Schultz S 2002 Nano Lett. 2 465

    [25]

    Hendren W R, Murphy A, Evans P, Connor D, Wurtz G A, Zayats A V, Atkinson R, Pollard R J 2008 J. Phys.: Condens. Matter 20 362203

    [26]

    Cong C, Wu D J, Liu X J 2011 Acta Phys. Sin. 60 046102 (in Chinese) [丛超, 吴大建, 刘晓峻 2011 物理学报 60 046102]

    [27]

    Wu D J, Liu X J, Li B 2011 J. Appl. Phys. 109 083540

    [28]

    Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245

    [29]

    Wei H, Hao F, Huang Y Z, Wang W Z, Nordlander P, Xu H X 2008 Nano Lett. 8 2497

    [30]

    Brewer S H, Anthireya S J, Lappi S E, Drapcho D L, Franzen S 2002 Langmuir 18 4460

    [31]

    Oldenburg S J, Hale G D, Radloff C, Halas N J 1999 Appl. Phys. Lett. 75 1063

    [32]

    Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302 419

    [33]

    Zhu J 2007 Appl. Phys. A 88 673

  • [1] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控. 物理学报, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [2] 夏文飞, 陈剑锋, 龙利, 李志远. 金纳米双球系统的高灵敏光学传感与其消光系数及局域场增强之关联. 物理学报, 2021, 70(9): 097301. doi: 10.7498/aps.70.20210231
    [3] 刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星. 纳米光学辐射传热: 从热辐射增强理论到辐射制冷应用. 物理学报, 2020, 69(3): 036501. doi: 10.7498/aps.69.20191906
    [4] 王飞, 魏兵, 杨谦, 李林茜. 基于Newmark算法的任意磁化方向铁氧体电磁散射时域有限差分分析. 物理学报, 2014, 63(16): 164101. doi: 10.7498/aps.63.164101
    [5] 叶松, 王向贤, 侯宜栋, 张志友, 杜惊雷. 自组装银膜增强8-羟基喹啉铝(Alq3)光致发光的实验和理论研究. 物理学报, 2014, 63(8): 087802. doi: 10.7498/aps.63.087802
    [6] 王飞, 魏兵, 李林茜. 色散介质电磁特性时域有限差分分析的Newmark方法. 物理学报, 2014, 63(10): 104101. doi: 10.7498/aps.63.104101
    [7] 王飞, 魏兵. 任意磁化方向铁氧体电磁散射时域有限差分分析的Z变换方法. 物理学报, 2013, 62(8): 084106. doi: 10.7498/aps.62.084106
    [8] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [9] 杨利霞, 马辉, 施卫东, 施丽娟, 于萍萍. 基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析. 物理学报, 2013, 62(3): 034102. doi: 10.7498/aps.62.034102
    [10] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [11] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [12] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [13] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [14] 杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚. 斜入射分层线性各向异性等离子体电磁散射时域有限差分方法分析. 物理学报, 2010, 59(9): 6089-6095. doi: 10.7498/aps.59.6089
    [15] 魏 兵, 葛德彪, 王 飞. 一种处理色散介质问题的通用时域有限差分方法. 物理学报, 2008, 57(10): 6290-6297. doi: 10.7498/aps.57.6290
    [16] 杨利霞, 葛德彪, 赵跃华, 王 刚, 阎 述. 基于直接离散方式的磁化铁氧体材料电磁散射的时域有限差分方法分析. 物理学报, 2008, 57(5): 2936-2940. doi: 10.7498/aps.57.2936
    [17] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻. 物理学报, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [18] 杨利霞, 葛德彪, 魏 兵. 电各向异性色散介质电磁散射的三维递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [19] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [20] 杨利霞, 葛德彪. 磁各向异性色散介质散射的Padé时域有限差分方法分析. 物理学报, 2006, 55(4): 1751-1758. doi: 10.7498/aps.55.1751
计量
  • 文章访问数:  5987
  • PDF下载量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-02
  • 修回日期:  2011-06-15
  • 刊出日期:  2012-02-05

/

返回文章
返回